No Arabic abstract
We present the first statistical analysis of 27 UVOT optical/ultra-violet lightcurves of GRB afterglows. We have found, through analysis of the lightcurves in the observers frame, that a significant fraction rise in the first 500s after the GRB trigger, that all lightcurves decay after 500s, typically as a power-law with a relatively narrow distribution of decay indices, and that the brightest optical afterglows tend to decay the quickest. We find that the rise could either be produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising lightcurve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8% confidence, there is a correlation, in the observed frame, between the apparent magnitude of the lightcurves at 400s and the rate of decay after 500s. However, in the rest frame a Spearman Rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle theta or within a core of uniform energy density theta_c. We also produced logarithmic luminosity distributions for three rest frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT lightcurves with the XRT lightcurve canonical model. The range in decay indices seen in UVOT lightcurves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model there is no indication of the rising behaviour observed in the UVOT lightcurves.
We present the systematic analysis of the UVOT and XRT light curves for a sample of 26 Swift Gamma-Ray Bursts (GRBs). By comparing the optical/UV and X-ray light curves, we found that they are remarkably different during the first 500s after the BAT trigger, while they become more similar during the middle phase of the afterglow, i.e. between 2000s and 20000s. If we take literally the average properties of the sample, we find that the mean temporal indices observed in the optical/UV and X-rays after 500s are consistent with a forward-shock scenario, under the assumptions that electrons are in the slow cooling regime, the external medium is of constant density and the synchrotron cooling frequency is situated between the optical/UV and X-ray observing bands. While this scenario describes well the averaged observed properties, some individual GRB afterglows require different or additional assumptions, such as the presence of late energy injection. We show that a chromatic break (a break in the X-ray light curve that is not seen in the optical) is present in the afterglows of 3 GRBs and demonstrate evidence for chromatic breaks in a further 4 GRBs. The average properties of these breaks cannot be explained in terms of the passage of the synchrotron cooling frequency through the observed bands, nor a simple change in the external density. It is difficult to reconcile chromatic breaks in terms of a single component outflow and instead, more complex jet structure or additional emission components are required.
We examine the the emission from optically bright gamma-ray burst (GRB) afterglows as the Ultraviolet and Optical Telescope (UVOT) on the Neil Gehrels Swift Observatory first begins observing, following the slew to target the GRB, while the pointing of the Swift satellite is still settling. We verify the photometric quality of the UVOT settling data using bright stars in the field of view. In the majority of cases we find no problems with the settling exposure photometry, but in one case we excise the first second of the exposure to mitigate a spacecraft attitude reconstruction issue, and in a second case we exclude the first second of the exposure in which the UVOT photocathode voltage appears to be ramping up. Of a sample of 23 afterglows which have peak V magnitudes <16, we find that all are detected in the settling exposures, when Swift arrives on target. For 9 of the GRBs the UVOT settling exposure took place before the conclusion of the prompt gamma-ray emission. Five of these GRBs have well defined optical peaks after the settling exposures, with rises of >0.5 mag in their optical lightcurves, and there is a marginal trend for these GRBs to have long T90. Such a trend is expected for thick-shell afterglows, but the temporal indices of the optical rises and the timing of the optical peaks appear to rule out thick shells.
The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (approximately 1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html . In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emission beyond ~ 1000 s of event data, and only two GRBs (GRB100316D and GRB101024A) with detections in the survey data prior to the starting of event data. (Some figures shown here are in lower resolution due to the size limit on arXiv. The full resolution version can be found at http://swift.gsfc.nasa.gov/results/batgrbcat/3rdBATcatalog.pdf )
The electron energy distribution index, p, is a fundamental parameter of the synchrotron emission from a range of astronomical sources. Here we examine one such source of synchrotron emission, Gamma-Ray Burst afterglows observed by the Swift satellite. Within the framework of the blast wave model, we examine the constraints placed on the distribution of p by the observed X-ray spectral indices and parametrise the distribution. We find that the observed distribution of spectral indices are inconsistent with an underlying distribution of p composed of a single discrete value but consistent with a Gaussian distribution centred at p = 2.36 and having a width of 0.59. Furthermore, accepting that the underlying distribution is a Gaussian, we find the majority (>94%) of GRB afterglows in our sample have cooling break frequencies less than the X-ray frequency.