Do you want to publish a course? Click here

Weakly Interacting Bose Mixtures at Finite Temperature

122   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recent experiments on Bose-Einstein mixtures with tunable interactions we study repulsive weakly interacting Bose mixtures at finite temperature. We obtain phase diagrams using Hartree-Fock theory which are directly applicable to experimentally trapped systems. Almost all features of the diagrams can be characterized using simple physical insights. Our work reveals two surprising effects which are dissimilar to a system at zero temperature. First of all, no pure phases exist, that is, at each point in the trap, particles of both species are always present. Second, even for very weak interspecies repulsion when full mixing is expected, condensate particles of both species may be present in a trap without them being mixed.



rate research

Read More

Using quantum Monte Carlo simulations, we study a mixture of bosons and fermions loaded on an optical lattice. With simple on-site repulsive interactions, this system can be driven into a solid phase. We dope this phase and, in analogy with pure bosonic systems, identify the conditions under which the bosons enter a supersolid phase, i.e., exhibiting at the same time charge density wave and superfluid order. We perform finite size scaling analysis to confirm the presence of a supersolid phase and discuss its properties, showing that it is a collective phase that also involve phase coherence of the fermions.
We study thermal properties of a trapped Bose-Bose mixture in a dilute regime using quantum Monte Carlo methods. Our main aim is to investigate the dependence of the superfluid density and the condensate fraction on temperature, for the mixed and separated phases. To this end, we use the diffusion Monte Carlo method, in the zero-temperature limit, and the path-integral Monte Carlo method for finite temperatures. The results obtained are compared with solutions of the coupled Gross-Pitaevskii equations for the mixture at zero temperature. We notice the existence of an anisotropic superfluid density in some phase-separated mixtures. Our results also show that the temperature evolution of the superfluid density and condensate fraction is slightly different, showing noteworthy situations where the superfluid fraction is smaller than the condensate fraction.
We study Bragg spectroscopy of a strongly interacting Bose-Einstein condensate using time-dependent Hartree-Fock-Bogoliubov theory. We include approximatively the effect of the momentum dependent scattering amplitude which is shown to be the dominant factor in determining the spectrum for large momentum Bragg scattering. The condensation of the Bragg scattered atoms is shown to significantly alter the observed excitation spectrum by creating a novel pairing channel of mobile pairs.
We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wave scattering length almost to zero via a magnetic Feshbach resonance. We employ a $^{39}$K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. With a control of the scattering length better that 0.1 $a_0$ we achieve coherence times of several hundreds of ms. The micrometric sizes of the atomic sample make our sensor an ideal candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry.
145 - N. Lo Gullo , L. DellAnna 2016
We present a non-equilibrium Greens functional approach to study the dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedins equations for the interacting single-particle Greens function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Greens function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one (1D) and two (2D) dimensions. In particular, we show how our approach is able to recover the crossover from ballistic to diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for 1D and 2D Bose Hubbard models, finding that surprisingly at high temperature a ballistic evolution is restored.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا