Do you want to publish a course? Click here

Iterative Spectrum Shaping with Opportunistic Multiuser Detection

132   0   0.0 ( 0 )
 Added by Rui Zhang
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

This paper studies a new decentralized resource allocation strategy, named iterative spectrum shaping (ISS), for the multi-carrier-based multiuser communication system, where two coexisting users independently and sequentially update transmit power allocations over parallel subcarriers to maximize their individual transmit rates. Unlike the conventional iterative water-filling (IWF) algorithm that applies the single-user detection (SD) at each users receiver by treating the interference from the other user as additional noise, the proposed ISS algorithm applies multiuser detection techniques to decode both the desired users and interference users messages if it is feasible, thus termed as opportunistic multiuser detection (OMD). Two encoding methods are considered for ISS: One is carrier independent encoding where independent codewords are modulated by different subcarriers for which different decoding methods can be applied; the other is carrier joint encoding where a single codeword is modulated by all the subcarriers for which a single decoder is applied. For each encoding method, this paper presents the associated optimal user power and rate allocation strategy at each iteration of transmit adaptation. It is shown that under many circumstances the proposed ISS algorithm employing OMD is able to achieve substantial throughput gains over the conventional IWF algorithm employing SD for decentralized spectrum sharing. Applications of ISS in cognitive radio communication systems are also discussed.



rate research

Read More

We consider the opportunistic multiuser diversity in the multiuser two-way amplify-and-forward (AF) relay channel. The relay, equipped with multiple antennas and a simple zero-forcing beam-forming scheme, selects a set of two way relaying user pairs to enhance the degree of freedom (DoF) and consequently the sum throughput of the system. The proposed channel aligned pair scheduling (CAPS) algorithm reduces the inter-pair interference and keeps the signal to interference plus noise power ratio (SINR) of user pairs relatively interference free in average sense when the number of user pairs become very large. For ideal situations, where the number of user pairs grows faster than the system signal to noise ratio (SNR), the DoF of $M$ per channel use can be achieved when $M$ is the relay antenna size. With a limited number of pairs, the system is overloaded and the sum rates saturate at high signal to noise ratio (SNR) though modifications of CAPS can improve the performance to a certain amount. The performance of CAPS can be further enhanced by semi-orthogonal channel aligned pair scheduling (SCAPS) algorithm, which not only aligns the pair channels but also forms semi-orthogonal inter-pair channels. Simulation results show that we provide a set of approaches based on (S)CAPS and modified (S)CAPS, which provides system performance benefit depending on the SNR and the number of user pairs in the network.
Opportunistic detection rules (ODRs) are variants of fixed-sample-size detection rules in which the statistician is allowed to make an early decision on the alternative hypothesis opportunistically based on the sequentially observed samples. From a sequential decision perspective, ODRs are also mixtures of one-sided and truncated sequential detection rules. Several results regarding ODRs are established in this paper. In the finite regime, the maximum sample size is modeled either as a fixed finite number, or a geometric random variable with a fixed finite mean. For both cases, the corresponding Bayesian formulations are investigated. The former case is a slight variation of the well-known finite-length sequential hypothesis testing procedure in the literature, whereas the latter case is new, for which the Bayesian optimal ODR is shown to be a sequence of likelihood ratio threshold tests with two different thresholds: a running threshold, which is determined by solving a stationary state equation, is used when future samples are still available, and a terminal threshold (simply the ratio between the priors scaled by costs) is used when the statistician reaches the final sample and thus has to make a decision immediately. In the asymptotic regime, the tradeoff among the exponents of the (false alarm and miss) error probabilities and the normalized expected stopping time under the alternative hypothesis is completely characterized and proved to be tight, via an information-theoretic argument. Within the tradeoff region, one noteworthy fact is that the performance of the Stein-Chernoff Lemma is attainable by ODRs.
A new form of multiuser diversity, named emph{multiuser interference diversity}, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.
An energy-efficient opportunistic collaborative beamformer with one-bit feedback is proposed for ad hoc sensor networks over Rayleigh fading channels. In contrast to conventional collaborative beamforming schemes in which each source node uses channel state information to correct its local carrier offset and channel phase, the proposed beamforming scheme opportunistically selects a subset of source nodes whose received signals combine in a quasi-coherent manner at the intended receiver. No local phase-precompensation is performed by the nodes in the opportunistic collaborative beamformer. As a result, each node requires only one-bit of feedback from the destination in order to determine if it should or shouldnt participate in the collaborative beamformer. Theoretical analysis shows that the received signal power obtained with the proposed beamforming scheme scales linearly with the number of available source nodes. Since the the optimal node selection rule requires an exhaustive search over all possible subsets of source nodes, two low-complexity selection algorithms are developed. Simulation results confirm the effectiveness of opportunistic collaborative beamforming with the low-complexity selection algorithms.
Cooperative transmission is an emerging communication technique that takes advantage of the broadcast nature of wireless channels. However, due to low spectral efficiency and the requirement of orthogonal channels, its potential for use in future wireless networks is limited. In this paper, by making use of multiuser detection (MUD) and network coding, cooperative transmission protocols with high spectral efficiency, diversity order, and coding gain are developed. Compared with the traditional cooperative transmission protocols with single-user detection, in which the diversity gain is only for one source user, the proposed MUD cooperative transmission protocols have the merit that the improvement of one users link can also benefit the other users. In addition, using MUD at the relay provides an environment in which network coding can be employed. The coding gain and high diversity order can be obtained by fully utilizing the link between the relay and the destination. From the analysis and simulation results, it is seen that the proposed protocols achieve higher diversity gain, better asymptotic efficiency, and lower bit error rate, compared to traditional MUD schemes and to existing cooperative transmission protocols. From the simulation results, the performance of the proposed scheme is near optimal as the performance gap is 0.12dB for average bit error rate (BER) 10^{-6} and 1.04dB for average BER 10^(-3), compared to two performance upper bounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا