Do you want to publish a course? Click here

The strongly coupled fourth family and a first-order electroweak phase transition (I) quark sector

194   0   0.0 ( 0 )
 Added by Masaya Kohda
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

In models of dynamical electroweak symmetry breaking due to strongly coupled fourth-family quarks and leptons, their low-energy effective descriptions may involve multiple composite Higgs fields, leading to a possibility that the electroweak phase transition at finite temperature is first order due to the Coleman-Weinberg mechanism. We examine the behavior of the electroweak phase transition based on the effective renormalizable Yukawa theory which consists of the fourth-family quarks and two SU(2)-doublet Higgs fields corresponding to the bilinear operators of the fourth-family quarks with/without imposing the compositeness condition. The strength of the first-order phase transition is estimated by using the finite-temperature effective potential at one-loop with the ring-improvement. In the Yukawa theory without the compositeness condition, it is found that there is a parameter region where the first-order phase transition is strong enough for the electroweak baryogenesis with the experimentally acceptable Higgs boson and fourth-family quark masses. On the other hand, when the compositeness condition is imposed, the phase transition turns out to be weakly first order, or possibly second order, although the result is rather sensitive to the details of the compositeness condition. Combining with the result of the Yukawa theory without the compositeness condition, it is argued that with the fourth-family quark masses in the range of 330-480 GeV, corresponding to the compositeness scale in the range of 1.0-2.3 TeV, the four-fermion interaction among the fourth-family quarks does not lead to the strongly first-order electroweak phase transition.



rate research

Read More

To realize first-order electroweak phase transition, it is necessary to generate a barrier in the thermal Higgs potential, which is usually triggered by scalar degree of freedom. We instead investigate phase transition patterns in pure fermion extensions of the standard model, and find that additional fermions with mass hierarchy and mixing could develop such barrier and realize strongly first-order phase transition in such models. In the Higgs potential with polynomial parametrization, the barrier can be generated in the following two patterns: (I) positive quadratic term, negative cubic term and positive quartic term or (II) positive quadratic term, negative quartic term and positive higher dimensional term, such as dimensional 6 operator.
We investigate the process of phase conversion in a thermally-driven {it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition, as the one provided by the MIT bag model.
We consider a non-Abelian dark SU(2)$_{rm D}$ model where the dark sector couples to the Standard Model (SM) through a Higgs portal. We investigate two different scenarios of the dark sector scalars with $Z_2$ symmetry, with Higgs portal interactions that can introduce mixing between the SM Higgs boson and the SM singlet scalars in the dark sector. We utilize the existing collider results of the Higgs signal rate, direct heavy Higgs searches, and electroweak precision observables to constrain the model parameters. The $text{SU(2)}_{text{D}}$ partially breaks into $text{U(1)}_{text{D}}$ gauge group by the scalar sector. The resulting two stable massive dark gauge bosons and pseudo-Goldstone bosons can be viable cold dark matter candidates, while the massless gauge boson from the unbroken $text{U(1)}_{text{D}}$ subgroup is a dark radiation and can introduce long-range attractive dark matter (DM) self-interaction, which can alleviate the small-scale structure issues. We study in detail the pattern of strong first-order phase transition and gravitational wave (GW) production triggered by the dark sector symmetry breaking, and further evaluate the signal-to-noise ratio for several proposed space interferometer missions. We conclude that the rich physics in the dark sector may be observable with the current and future measurements at colliders, DM experiments, and GW interferometers.
In the $U(1)_X$ extension of the minimal supersymmetric standard model, we study a two step phase transition for the universe. The first step happens at high temperature from origin to z coordinate axis. The second step is the electroweak phase transition(EWPT) with barrier between two minima, which is the first order EWPT. We study the condition for this type phase transition to occur. The strong first order EWPT is our expection, and with the supposed parameters the evolution of the universe is plotted by the figures.
We analyze the electroweak phase transition at finite temperature in a model of gauge-Higgs unification where the fermion mass hierarchy including top quark mass, a viable electroweak symmetry breaking and an observed Higgs mass are successfully reproduced. To study the phase transition, we derive the general formula of the 1-loop effective potential at finite temperature by using the $zeta$ function regularization method. It is remarkable that the functions determining the Kaluza-Klein mass spectrum have only to be necessary in calculations. This potential can be applicable to any higher dimensional theory in flat space where one extra spatial dimension is compactified. Applying to our model of gauge-Higgs unification, the strong first phase transition compatible with 125 GeV Higgs mass is found to happen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا