Do you want to publish a course? Click here

Two infinite families of nonadditive quantum error-correcting codes

170   0   0.0 ( 0 )
 Added by Sixia Yu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct explicitly two infinite families of genuine nonadditive 1-error correcting quantum codes and prove that their coding subspaces are 50% larger than those of the optimal stabilizer codes of the same parameters via the linear programming bound. All these nonadditive codes can be characterized by a stabilizer-like structure and thus their encoding circuits can be designed in a straightforward manner.



rate research

Read More

406 - Sixia Yu , Qing Chen , C. H. Lai 2007
We report the first nonadditive quantum error-correcting code, namely, a $((9,12,3))$ code which is a 12-dimensional subspace within a 9-qubit Hilbert space, that outperforms the optimal stabilizer code of the same length by encoding more levels while correcting arbitrary single-qubit errors.
159 - Sixia Yu , Qing Chen , C.H. Oh 2007
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are potentially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.
In this paper, based on the nonbinary graph state, we present a systematic way of constructing good non-binary quantum codes, both additive and nonadditive, for systems with integer dimensions. With the help of computer search, which results in many interesting codes including some nonadditive codes meeting the Singleton bounds, we are able to construct explicitly four families of optimal codes, namely, $[[6,2,3]]_p$, $[[7,3,3]]_p$, $[[8,2,4]]_p$ and $[[8,4,3]]_p$ for any odd dimension $p$ and a family of nonadditive code $((5,p,3))_p$ for arbitrary $p>3$. In the case of composite numbers as dimensions, we also construct a family of stabilizer codes $((6,2cdot p^2,3))_{2p}$ for odd $p$, whose coding subspace is {em not} of a dimension that is a power of the dimension of the physical subsystem.
259 - Isaac Kremsky , Min-Hsiu Hsieh , 2008
We present a general formalism for quantum error-correcting codes that encode both classical and quantum information (the EACQ formalism). This formalism unifies the entanglement-assisted formalism and classical error correction, and includes encoding, error correction, and decoding steps such that the encoded quantum and classical information can be correctly recovered by the receiver. We formally define this kind of quantum code using both stabilizer and symplectic language, and derive the appropriate error-correcting conditions. We give several examples to demonstrate the construction of such codes.
We study stabilizer quantum error correcting codes (QECC) generated under hybrid dynamics of local Clifford unitaries and local Pauli measurements in one dimension. Building upon 1) a general formula relating the error-susceptibility of a subregion to its entanglement properties, and 2) a previously established mapping between entanglement entropies and domain wall free energies of an underlying spin model, we propose a statistical mechanical description of the QECC in terms of entanglement domain walls. Free energies of such domain walls generically feature a leading volume law term coming from its surface energy, and a sub-volume law correction coming from thermodynamic entropies of its transverse fluctuations. These are most easily accounted for by capillary-wave theory of liquid-gas interfaces, which we use as an illustrative tool. We show that the information-theoretic decoupling criterion corresponds to a geometric decoupling of domain walls, which further leads to the identification of the contiguous code distance of the QECC as the crossover length scale at which the energy and entropy of the domain wall are comparable. The contiguous code distance thus diverges with the system size as the subleading entropic term of the free energy, protecting a finite code rate against local undetectable errors. We support these correspondences with numerical evidence, where we find capillary-wave theory describes many qualitative features of the QECC; we also discuss when and why it fails to do so.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا