Do you want to publish a course? Click here

Beta decay studies of r-process nuclei at the National Superconducting Cyclotron Laboratory

92   0   0.0 ( 0 )
 Added by Jorge Pereira
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The impact of nuclear physics on astrophysical r-process models is discussed, emphasizing the importance of beta-decay properties of neutron-rich nuclei. Several r-process motivated beta-decay experiments performed at the National Superconducting Cyclotron Laboratory are presented. The experiments include the measurement of beta-decay half-lives and neutron emission probabilities of nuclei in regions around Ni-78; Se-90; Zr-106 and Rh-120, as well as spectroscopic studies of Pd-120. A summary on the different experimental techniques employed, data analysis, results and impact on model calculations is presented.



rate research

Read More

A JINA/VISTARS r-process campaign was completed at the A1900 Fragment Separator of the National Superconducting Cyclotron Laboratory in the fall of 2005. The purpose of the campaign was the measurement of the beta-decay half-lives and beta-delayed neutron-emission probabilities of different unknown neutron-rich nuclei participating in the r-process. Details of this campaign will be presented.
The $beta$-decay and isomeric properties of $^{54}$Sc, $^{50}$K and $^{53}$Ca are presented, and their implications with respect to the goodness of the N=32 sub-shell closure discussed.
Measurements of the beta-decay properties of r-process nuclei below A=110 have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. Beta-decay half-lives for Y-105, Zr-106,107 and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,110 and upper limits for Y-105, Zr-103,104,105,106,107 and Mo-108,111 have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.
Nuclear structure plays a significant role on the rapid neutron capture process (r-process) since shapes evolve with the emergence of shells and sub-shells. There was some indication in neighboring nuclei that we might find examples of a new N=56 sub-shell, which may give rise to a doubly magic Se-90 nucleus. Beta-decay half lives of nuclei around Se-90 have been measured to determine if this nucleus has in fact a doubly-magic character. The fragmentation of Xe-136 beam at the National Superconducting Cyclotron Laboratory at Michigan State University was used to create a cocktail of nuclei in the A=90 region. We have measured the half lives of twenty-two nuclei near the r-process path in the A=90 region. The half lives of As-88 and Se-90 have been measured for the first time. The values were compared with theoretical predictions in the search for nuclear-deformation signatures of a N=56 sub-shell, and its possible role in the emergence of a potential doubly-magic Se-90. The impact of such hypothesis on the synthesis of heavy nuclei, particularly in the production of Sr, Y and Zr elements was investigated with a weak r-process network. The new half lives agree with results obtained from a standard global QRPA model used in r-process calculations, indicating that Se-90 has a quadrupole shape incompatible with a closed N=56 sub-shell in this region. The impact of the measured Se-90 half-life in comparison with a former theoretical predication associated with a spherical half-life on the weak-r-process is shown to be strong.
Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا