No Arabic abstract
In this paper we propose an explicit two-level conservative scheme based on a TE/TM like splitting of the field components in time. Its dispersion properties are adjusted to accelerator problems. It is simpler and faster than the implicit version [1]. It does not have dispersion in the longitudinal direction and the dispersion properties in the transversal plane are improved. The explicit character of the new scheme allows a uniformly stable conformal method without iterations and the scheme can be parallelized easily. It assures energy and charge conservation. A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for higher order azimuthal modes as it takes place for Yees explicit method used in the most popular electrodynamics codes.
The 3D quasi-static particle-in-cell (PIC) algorithm is a very efficient method for modeling short-pulse laser or relativistic charged particle beam-plasma interactions. In this algorithm, the plasma response to a non-evolving laser or particle beam is calculated using Maxwells equations based on the quasi-static approximate equations that exclude radiation. The plasma fields are then used to advance the laser or beam forward using a large time step. The algorithm is many orders of magnitude faster than a 3D fully explicit relativistic electromagnetic PIC algorithm. It has been shown to be capable to accurately model the evolution of lasers and particle beams in a variety of scenarios. At the same time, an algorithm in which the fields, currents and Maxwell equations are decomposed into azimuthal harmonics has been shown to reduce the complexity of a 3D explicit PIC algorithm to that of a 2D algorithm when the expansion is truncated while maintaining accuracy for problems with near azimuthal symmetry. This hybrid algorithm uses a PIC description in r-z and a gridless description in $phi$. We describe a novel method that combines the quasi-static and hybrid PIC methods. This algorithm expands the fields, charge and current density into azimuthal harmonics. A set of the quasi-static field equations are derived for each harmonic. The complex amplitudes of the fields are then solved using the finite difference method. The beam and plasma particles are advanced in Cartesian coordinates using the total fields. Details on how this algorithm was implemented using a similar workflow to an existing quasi-static code, QuickPIC, are presented. The new code is called QPAD for QuickPIC with Azimuthal Decomposition. Benchmarks and comparisons between a fully 3D explicit PIC code, a full 3D quasi-static code, and the new quasi-static PIC code with azimuthal decomposition are also presented.
The Reynolds-Averaged Navier-Stokes equations and the Large-Eddy Simulation equations can be coupled using a transition function to switch from a set of equations applied in some areas of a domain to the other set in the other part of the domain. Following this idea, different time integration schemes can be coupled. In this context, we developed a hybrid time integration scheme that spatially couples the explicit scheme of Heun and the implicit scheme of Crank and Nicolson using a dedicated transition function. This scheme is linearly stable and second-order accurate. In this paper, an extension of this hybrid scheme is introduced to deal with a temporal adaptive procedure. The idea is to treat the time integration procedure with unstructured grids as it is performed with Cartesian grids with local mesh refinement. Depending on its characteristic size, each mesh cell is assigned a rank. And for two cells from two consecutive ranks, the ratio of the associated time steps for time marching the solutions is $2$. As a consequence, the cells with the lowest rank iterate more than the other ones to reach the same physical time. In a finite-volume context, a key ingredient is to keep the conservation property for the interfaces that separate two cells of different ranks. After introducing the different schemes, the paper recalls briefly the coupling procedure, and details the extension to the temporal adaptive procedure. The new time integration scheme is validated with the propagation of 1D wave packet, the Sods tube, and the transport of a bi-dimensional vortex in an uniform flow.
The lattice Boltzmann (LB) method has gained much success in a variety of fields involving fluid flow and/or heat transfer. In this method, the bounce-back scheme is a popular boundary scheme for treating nonslip boundaries. However, this scheme leads to staircase-shaped boundaries for curved walls. Therefore many curved boundary schemes have been proposed, but mostly suffer from mass leakage at the curved boundaries. Several correction schemes have been suggested for simulating single-phase flows, but very few discussions or studies have been made for two-phase LB simulations with curved boundaries. In this paper, the performance of three well-known types of curved boundary schemes in two-phase LB simulations is investigated through modeling a droplet resting on a circular cylinder. For all of the investigated schemes, the results show that the simulated droplet rapidly evaporates under the nonslip and isothermal conditions, owing to the imbalance between the mass streamed out of the system by the outgoing distribution functions and the mass streamed into the system by the incoming distribution functions at each boundary node. Based on the numerical investigation, we formulate two modified mass-conservative curved boundary schemes for two-phase LB simulations. The accuracy of the modified curved boundary schemes and their capability of conserving mass in two-phase LB simulations are numerically demonstrated.
In the wake of the intense effort made for the experimental CILEX project, numerical simulation cam- paigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic lim- itations both in terms of physical accuracy and computational performances. These limitations are illu- strated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-per- formance PIC code for high energy particle acceleration.
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.