No Arabic abstract
The borocarbides RNi2B2C (R=Gd, Ho, Er) exhibit a large variety of magnetic states and as a consequence rich phase diagrams. We have analyzed the nature of these states by specific heat investigations. The data were measured down to 0.5 K and up to 80 kOe. The overall evolution of each Cm(T,H) curve is observed to reflect faithfully the features of the corresponding H-T phase diagram. Within the lower ranges of temperature and fields, the calculations based on linearized field-dependent spin-wave theory are found to reproduce satisfactorily the measured Cm(T,H) curves: accordingly, within these ranges, the thermodynamical properties of these compounds can be rationalized in terms of only two parameters: the spin-wave energy gap and the stiffness coefficient. For the intermediate fields ranges (H1<H<Hsat) wherein successive field-induced metamagnetic modes are stabilized, the evolution of Cm(T,H) is discussed in terms of the Maxwell relation (dCm/dH)T=T(d^2M/dT^2)H. For the particular case of GdNi2B2C wherein the anisotropy is dictated by the classical dipole interaction, Cm(T,H) across the whole ordered state is numerically evaluated within the model of Jensen and Rotter [PRB 77 (2008) 134408].
The magnetic structures of the title compounds have been studied by neutron diffraction. In contrast to the isomorphous RNi2B2C compounds wherein a variety of exotic incommensurate modulated structures has been observed, the magnetic structure of ErCo2B2C is found to be collinear antiferromagnet with k=((1/2),0,(1/2)) while that of HoCo2B2C and DyCo2B2C are observed to be simple ferromagnets. For all studied compounds, the moments are found to be confined within the basal plane and their magnitudes are in good agreement with the values obtained from the low-temperature isothermal magnetization measurements. The absence of modulated magnetic structures in the RCo2B2C series (for ErCo2B2C, verified down to 50 mK) is attributed to the quenching of the Fermi surface nesting features.
We report a systematic study on the low-temperature thermal conductivity (kappa) of R_2Ti_2O_7 (R = Gd and Er) single crystals with different directions of magnetic field and heat current. It is found that the magnetic excitations mainly act as phonon scatterers rather than heat carriers, although these two materials have long-range magnetic orders at low temperatures. The low-T kappa(H) isotherms of both compounds show rather complicated behaviors and have good correspondences with the magnetic transitions, where the kappa(H) curves show drastic dip- or step-like changes. In comparison, the field dependencies of kappa are more complicated in Gd_2Ti_2O_7, due to the complexity of its low-T phase diagram and field-induced magnetic transitions. These results demonstrate the significant coupling between spins and phonons in these materials and the ability of heat-transport properties probing the magnetic transitions.
We have made a magnetic characterization of Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3, Sm0.5Ca0.5MnO3, Dy0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3 polycrystalline samples. Ferromagnetic, antiferromagnetic and charge ordering transitions in our samples agree with previous reports. We also report specific heat measurements with applied magnetic fields between 0 and 9 T and temperatures between 2 and 300 K in all cases. Each curve was successfully fitted at high temperatures by an Einstein model with three optical phonon modes. Close to the charge ordering and ferromagnetic transition temperatures the specific heat curves showed peaks superposed to the characteristic response of the lattice oscillations. The entropy variation corresponding to the charge ordering transition was higher than the one corresponding to the ferromagnetic transition. The external magnetic field seems to have no effect in specific heat of the CO phase transition.
The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fields than previously assumed. Magnetic irreversibility indicating the presence of a spontaneous magnetic moment is found near 50 K for R=Er, Yb, and Tm. At very low temperatures and low magnetic fields the phase boundary defined by the ordering of the rare earth moments is resolved. The sizable dielectric anomalies observed along all phase boundaries are evidence for strong spin-lattice coupling in the hexagonal RMnO3. In HoMnO3 the strong magnetoelastic distortions are investigated in more detail via magnetostriction experiments up to 14 Tesla. The results are discussed based on existing data on magnetic symmetries and the interactions between the Mn-spins, the rare earth moments, and the lattice.
The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe3 family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the resistivity of DyTe3 indicates that additional nesting of the reconstructed Fermi surface in the CDW state plays an important role in determining the magnetic structure.