Do you want to publish a course? Click here

Multiferroicity and spiral magnetism in FeVO$_4$ with quenched Fe orbital moments

127   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

FeVO$_4$ has been studied by heat capacity, magnetic susceptibility, electric polarization and single crystal neutron diffraction experiments. The triclinic crystal structure is made of emph{S}-shaped clusters of six Fe$^{3+}$ ions, linked by VO$_4^{3-}$ groups. Two long-range magnetic ordering transitions occur at T$_{N1}$=22K and T$_{N2}$=15K. Both magnetic structures are incommensurate. That stable below T$_{N1}$ is collinear with amplitude modulated moments whereas below T$_{N2}$ the arrangement is non-collinear with a helicoidal modulation. Below T$_{N2}$, fevo becomes weakly ferroelectric coincidentally with the loss of the collinearity of the magnetic structure. We conclude that fevo provides another example of frustrated spiral magnet similar to the classical TbMnO$_3$ compound. However, fevo has quenched orbital moments and a particular structure clarifying the respective role of anisotropy and magnetic frustration in this type of multiferroic materials.



rate research

Read More

The magnetic response of CaK(Fe$_{0.949}$Ni$_{0.051}$)$_4$As$_4$ was investigated by means of the muon-spin rotation/relaxation. The long-range commensurate magnetic order sets in below the N{e}el temperature $T_{rm N}= 50.0(5)$~K. The density-functional theory calculations have identified three possible muon stopping sites. The experimental data were found to be consistent with only one type of magnetic structure, namely, the long-range magnetic spin-vortex-crystal order with the hedgehog motif within the $ab-$plane and the antiferromagnetic stacking along the $c-$direction. The value of the ordered magnetic moment at $Tapprox3$ K was estimated to be $m_{rm Fe}=0.38(11)$ $mu_{rm B}$ ($mu_{rm B}$ is the Bohr magneton). A microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature $T_{rm c}simeq 9$ K is observed. Comparison with 11, 122, and 1144 families of Fe-based pnictides points to existence of correlation between the reduction of the magnetic order parameter at $Trightarrow 0$ and the ratio of the transition temperatures $T_{rm c}/T_{rm N}$. Such correlations were found to be described by Machidas model for coexistence of itinerant spin-density wave magnetism and superconductivity [Machida, J. Phys. Soc. Jpn. 50, 2195 (1981) and Budko et al., Phys. Rev. B 98, 144520 (2018)].
We report resistance and elastoresistance measurements on (Ba$_{0.5}$K$_{0.5}$)Fe$_2$As$_2$, CaKFe$_4$As$_4$, and KCa$_2$Fe$_4$As$_4$F$_2$. The Fe-site symmetry is $D_{2d}$ in the first compound but $C_{2v}$ in the latter two, which lifts the degeneracy of the Fe $d_{xz}$ and $d_{yz}$ orbitals. The temperature dependence of the resistance and elastoresistance is similar between the three compounds. Especially, the [110] elastoresistance is enhanced with decreasing temperature irrespective of the Fe-site symmetry. This appears to be in conflict with recent Raman scattering studies on CaKFe$_4$As$_4$, which suggest the absence of nematic fluctuations. We consider possible ways of reconciliation and suggest that the present result is important in elucidating the origin of in-plane resistivity anisotropy in iron-based superconductors.
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31.007(1) {AA}, and $Z$ = 2), which contains double Fe$_2$As$_2$ conducting layers separated by insulating Ca$_2$F$_2$ layers. Our measurements of electrical resistivity, dc magnetic susceptibility and heat capacity demonstrate bulk superconductivity at 33 K in KCa$_2$Fe$_4$As$_4$F$_2$.
165 - J. Zhang , L. Ma , J. Dai 2014
We report $^{51}$V nuclear magnetic resonance (NMR) studies on single crystals of the multiferroic material FeVO$_4$. The high-temperature Knight shift shows Curie-Weiss behavior, $^{51}K = a/(T + theta)$, with a large Weiss constant $theta approx$ 116 K. However, the $^{51}$V spectrum shows no ordering near these temperatures, splitting instead into two peaks below 65 K, which suggests only short-ranged magnetic order on the NMR time scale. Two magnetic transitions are identified from peaks in the spin-lattice relaxation rate, $1/^{51}T_1$, at temperatures $T_{N1} approx$ 19 K and $T_{N2} approx$ 13 K, which are lower than the estimates obtained from polycrystalline samples. In the low-temperature incommensurate spiral state, the maximum ordered moment is estimated as 1.95${mu}_B$/Fe, or 1/3 of the local moment. Strong low-energy spin fluctuations are also indicated by the unconventional power-law temperature dependence $1/^{51}T_1 propto T^2$. The large Weiss constant, short-range magnetic correlations far above $T_{N1}$, small ordered moment, significant low-energy spin fluctuations, and incommensurate ordered phases all provide explicit evidence for strong magnetic frustration in FeVO$_4$.
421 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmically flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا