نحن نقوم بدراسة الانبعاث الكولومي لحالات عالية الطاقة في الاصطدامات المتوسطة ($E_{lab}sim10-500$ MeV/nucleon). ويظهر أن كسورات الانبعاثات $E1$ و $E2$ أكبر في الطاقات الأطول، بكثير أقل من 10 MeV/nucleon. وتظهر التأثيرات المتأخرة والتشوه الكولومي كلاهما مهما للطاقات منخفضة مثل 10 MeV/nucleon وحتى 500 MeV/nucleon. وتناقش التأثيرات على الدراسات في مرافق الجزيئات المتشعبة.
We investigate the Coulomb excitation of low-lying states of unstable nuclei in intermediate energy collisions ($E_{lab}sim10-500$ MeV/nucleon). It is shown that the cross sections for the $E1$ and $E2$ transitions are larger at lower energies, much less than 10 MeV/nucleon. Retardation effects and Coulomb distortion are found to be both relevant for energies as low as 10 MeV/nucleon and as high as 500 MeV/nucleon. Implications for studies at radioactive beam facilities are discussed.
Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEUs), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He4 from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.
The $B(E2;0^+to2^+)$ value in $^{68}$Ni has been measured using Coulomb excitation at safe energies. The $^{68}$Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted $gamma$ rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.8$^{+1.2}_{-1.0}$ 10$^2$ e$^2$fm$^4$ is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low $0^+to2^+$ transition probability.
Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to 4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes
we study the effect of Coulomb interactions on balance energy for various colliding nuclei in terms of mass asymmetry. This study shows that the balance energy is affected by the Coulomb interactions as well as different nuclear equations of state. The preliminary results calculated theoretically will be of great use for scientists at VECC. This study is further in progress.
Antiproton scattering off $^3He$ and $^4He$ targets is considered at beam energies below 300 MeV within the Glauber-Sitenko approach, utilizing the $bar N N$ amplitudes of the Julich model as input. A good agreement with available data on differential $bar p ^4He$ cross sections and on $bar p ^3He$ and $pbar ^4He$ reaction cross sections is obtained. Predictions for polarized total $bar p ^3$He cross sections are presented, calculated within the single-scattering approximation and including Coulomb-nuclear interference effects. The kinetics of the polarization buildup is discussed.