وفي هذا المخطوط نحاول دراسة قدرات التقاط المفرد التقريبي (DDA) لمحاكاة الانعكاس من الجسيمات الأكبر من طول الموجة المدخلة، ونصف نصا متاحا على الإنترنت من البرنامج الحاسوبي المحسن DDA الذي يعالج العدد الكبير من المفردات المطلوبة لهذه المحاكاة. وتم عرض المحاكاة الرقمية للانعكاس الضوئي على الكرات بحجم المعلمات x تصل إلى 160 و 40 لمؤشر الشكل الضوئي m = 1.05 و 2 على التوالي ومقارنتها مع النتائج الدقيقة لنظرية مي. وتزيد الأخطاء في كلا الكميات المنعكسة الإجمالية والموجبة عند تزايد m ولا يوجد تبعية نظامية على x. وتزيد الوقت الحسابي بشكل سريع مع كل من x و m، وتصل القيم إلى أكثر من أسبوعين على مجموعة من 64 معالج. والميزة الرئيسية للبرنامج الحاسوبي هي القدرة على توزيع محاكاة DDA واحدة على مجموعة من الحاسوبات، مما يسمح له بمحاكاة الانعكاس الضوئي على الجسيمات الكبيرة جدا، مثل الأشياء التي يتم اعتبارها في هذا المخطوط. وتم مناقشة القيود الحالية وطرق التحسين المحتملة.
In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA computer program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are considered in this manuscript. Current limitations and possible ways for improvement are discussed.
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in th
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a
We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different d
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed with the discrete dipole approximation (DDA) and the scanning flow cytometry (SFC), respectively. SFC permits measurement of angular dependence of light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the incident light upon the indicatrix. Numerical calculations of indicatrices for several aspect ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e. face-on and rim-on incidence. Only the oblate spheroid model for rim-on incidence gives results similar to the rigorous biconcave disk model.
We present a method of incorporating the discrete dipole approximation (DDA) method with the point matching method to formulate the T-matrix for modeling arbitrarily shaped micro-sized objects. The emph{T}-matrix elements are calculated using point matching between fields calculated using vector spherical wave functions and DDA. When applied to microrotors, their discrete rotational and mirror symmetries can be exploited to reduce memory usage and calculation time by orders of magnitude; a number of optimization methods can be employed based on the knowledge of the relationship between the azimuthal mode and phase at each discrete rotational point, and mode redundancy from Floquets theorem. A reduced-mode T-matrix can also be calculated if the illumination conditions are known.