Do you want to publish a course? Click here

Stochastic Lie group integrators

أدوات التكامل المجموعة الخطأ الإحصائي

312   0   0.0 ( 0 )
 Added by Simon Malham
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We present Lie group integrators for nonlinear stochastic differential equations with non-commutative vector fields whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action, and subsequently pull back the flow to the corresponding Lie algebra via the exponential map. We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the Lie group and then to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. These involve using an underlying ordinary differential integrator to approximate the flow generated by a truncated stochastic exponential Lie series. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Further, we show that some Castell--Gaines methods are uniformly more accurate than the corresponding stochastic Taylor schemes. Lastly we demonstrate our methods by simulating the dynamics of a free rigid body such as a satellite and an autonomous underwater vehicle both perturbed by two independent multiplicative stochastic noise processes.



rate research

Read More

This article presents and analyses an exponential integrator for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. We first prove that the strong order of the numerical approximation is $1/2$ if the nonlinear term in the system is globally Lipschitz-continuous. Then, we use this fact to prove that the exponential integrator has convergence order $1/2$ in probability and almost sure order $1/2$, in the case of the cubic nonlinear coupling which is relevant in optical fibers. Finally, we present several numerical experiments in order to support our theoretical findings and to illustrate the efficiency of the exponential integrator as well as a modified version of it.
The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a time integrator having the same property for all times. Furthermore, strong and weak convergence of the numerical scheme along with efficient multilevel Monte Carlo estimators are studied. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.
We perform a numerical analysis of a class of randomly perturbed {H}amiltonian systems and {P}oisson systems. For the considered additive noise perturbation of such systems, we show the long time behavior of the energy and quadratic Casimirs for the exact solution. We then propose and analyze a drift-preserving splitting scheme for such problems with the following properties: exact drift preservation of energy and quadratic Casimirs, mean-square order of convergence one, weak order of convergence two. These properties are illustrated with numerical experiments.
This article presents explicit exponential integrators for stochastic Maxwells equations driven by both multiplicative and additive noises. By utilizing the regularity estimate of the mild solution, we first prove that the strong order of the numerical approximation is $frac 12$ for general multiplicative noise. Combing a proper decomposition with the stochastic Fubinis theorem, the strong order of the proposed scheme is shown to be $1$ for additive noise. Moreover, for linear stochastic Maxwells equation with additive noise, the proposed time integrator is shown to preserve exactly the symplectic structure, the evolution of the energy as well as the evolution of the divergence in the sense of expectation. Several numerical experiments are presented in order to verify our theoretical findings.
HNets is a class of neural networks on grounds of physical prior for learning Hamiltonian systems. This paper explains the influences of different integrators as hyper-parameters on the HNets through error analysis. If we define the network target as the map with zero empirical loss on arbitrary training data, then the non-symplectic integrators cannot guarantee the existence of the network targets of HNets. We introduce the inverse modified equations for HNets and prove that the HNets based on symplectic integrators possess network targets and the differences between the network targets and the original Hamiltonians depend on the accuracy orders of the integrators. Our numerical experiments show that the phase flows of the Hamiltonian systems obtained by symplectic HNets do not exactly preserve the original Hamiltonians, but preserve the network targets calculated; the loss of the network target for the training data and the test data is much less than the loss of the original Hamiltonian; the symplectic HNets have more powerful generalization ability and higher accuracy than the non-symplectic HNets in addressing predicting issues. Thus, the symplectic integrators are of critical importance for HNets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا