Do you want to publish a course? Click here

Origin of the Ising Ferrimagnetism and Spin-Charge Coupling in LuFe2O4

118   0   0.0 ( 0 )
 Added by H. J. Xiang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin ordering and spin-charge coupling in LuFe2O4 were investigated on the basis of density functional calculations and Monte Carlo simulations. The 2:1 ferrimagnetism arises from the strong antiferromagnetic intra-sheet Fe3+-Fe3+ and Fe3+ -Fe2+ as well as some substantial antiferromagnetic Fe2+-Fe3+ inter-sheet spin exchange interactions. The giant magnetocapacitance at room temperature and the enhanced electric polarization at 240 K of LuFe2O4 are explained by the strong spin-charge coupling.



rate research

Read More

69 - Y. Zhang , J. J. Gong , C. F. Li 2018
LiOsO$_3$ is the first experimentally confirmed polar metal with ferroelectric-like distortion. One puzzling experimental fact is its paramagnetic state down to very low temperature with negligible magnetic moment, which is anomalous considering its $5d^3$ electron configuration since other osmium oxides (e.g. NaOsO$_3$) with $5d^3$ Os ions are magnetic. Here the magnetic and electronic properties of LiOsO$_3$ are re-investigated carefully using the first-principles density functional theory. Our calculations reveal that the magnetic state of LiOsO$_3$ can be completely suppressed by the spin-orbit coupling. The subtle balance between significant spin-orbit coupling and weak Hubbard $U$ of $5d$ electrons can explain both the nonmagnetic LiOsO$_3$ and magnetic NaOsO$_3$. Our work provides a reasonable understanding of the long-standing puzzle of magnetism in some osmium oxides.
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driven effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
180 - R.O. Kuzian , V.V. Laguta , 2013
We show that a superstructure of antiferromagnetically interacting Fe$^{3+}$ ($S=5/2$) ions in double perovskites AFe$_{1/2}$M$_{1/2}$O$_{3}$ exhibits a ferrimagnetic ordering below $T_{fe} approx 5.6J_1$ ($J_1/k_B sim 50$~K), which is close to room temperature. Small clusters of the same structure exhibit a superparamagnetic behavior at $T lesssim T_{fe}$. The possibility of formation of such clusters explains the room-temperature (superpara)magnetism in 3$d$-metal based oxides.
The electronic and magnetic properties of TbMnO3 leading to its ferroelectric (FE) polarization were investigated on the basis of relativistic density functional theory (DFT) calculations. In agreement with experiment, we show that the spin-spiral plane of TbMnO3 can be either the bc- or ab-plane, but not the ac-plane. As for the mechanism of FE polarization, our work reveals that the pure electronic model by Katsura, Nagaosa and Balatsky (KNB) is inadequate in predicting the absolute direction of FE polarization. For the ab-plane spin-spiral state of TbMnO3, the direction of FE polarization predicted by the KNB model is opposite to that predicted by DFT calculations. In determining the magnitude and the absolute direction of FE polarization in spin-spiral states, it is found crucial to consider the displacements of the ions from their ecntrosymmetric positions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا