Semiring Properties of Heyting Algebras


Abstract in English

The relationship between Heyting algebras (HA) and semirings is explored. A new class of HAs called Symmetric Heyting algebras (SHAs) is proposed, and a necessary condition on SHAs to be consider semirings is given. We define a new mathematical family called Heyting structures, which are similar to semirings, but with Heyting-algebra operators in place of the usual arithmetic operators usually seen in semirings. The impact of the zero-sum free property of semirings on Heyting structures is shown as also the condition under which it is possible to extend one Heyting structure to another. It is also shown that the union of two or more sets forming Heyting structures is again a Heyting structure, if the operators on the new structure are suitably derived from those of the component structures. The analysis also provides a sufficient condition such that the larger Heyting structure satisfying a monotony law implies that the ones forming the union do so as well.

Download