Do you want to publish a course? Click here

Unveiling the dominant gas heating mechanism in local LIRGs and ULIRGs

95   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show preliminary results from a sample of Luminous and Ultra-Luminous Infrared Galaxies (LIRGs and ULIRGs, respectively) in the local universe, obtained from observations using the Very Large Array (VLA), the Multi-Element Radio Link Interferometer Network (MERLIN), and the European VLBI Network (EVN). The main goal of our high-resolution, high-sensitivity radio observations is to unveil the dominant gas heating mechanism in the central regions of local (U)LIRGs. The main tracer of recent star-formation in (U)LIRGs is the explosion of core-collapse supernovae (CCSNe), which are the endproducts of the explosion of massive stars and yield bright radio events. Therefore, our observations will not only allow us to answer the question of the dominant heating mechanism in (U)LIRGs, but will yield also the CCSN rate and the star-formation rate (SFR) for the galaxies of the sample.



rate research

Read More

144 - Desika Narayanan 2005
The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded AGNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.
The sample of nearby LIRGs and ULIRGs for which dense molecular gas tracers have been measured is building up, allowing for the study of the physical and chemical properties of the gas in the variety of objects in which the most intense star formation and/or AGN activity in the local universe is taking place. This characterisation is essential to understand the processes involved, discard others and help to interpret the powerful starbursts and AGNs at high redshift that are currently being discovered and that will routinely be mapped by ALMA. We have studied the properties of the dense molecular gas in a sample of 17 nearby LIRGs and ULIRGs through millimeter observations of several molecules (HCO+, HCN, CN, HNC and CS) that trace different physical and chemical conditions of the dense gas in these extreme objects. In this paper we present the results of our HCO+ and HCN observations. We conclude that the very large range of measured line luminosity ratios for these two molecules severely questions the use of a unique molecular tracer to derive the dense gas mass in these galaxies.
133 - D. Fadda 2010
We present ultra-deep mid-IR spectra of 48 infrared-luminous galaxies in the GOODS-South field obtained with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. These galaxies are selected among faint infrared sources (0.14 - 0.5 mJy at 24 um) in two redshift bins (0.76-1.05 and 1.75-2.4) to sample the major contributors to the cosmic infrared background at the most active epochs. We estimate redshifts for 92% of the sample using PAH and Si absorption features. Only few of these galaxies (5% at z~1 and 12% at z~2) have their total infrared luminosity dominated by emission from AGN. The averaged mid-IR spectra of the z~1 LIRGs and of the z~2 ULIRGs are very similar to the averaged spectrum of local starbursts and HII-like ULIRGs, respectively. We find that 6.2um PAH equivalent widths reach a plateau of ~1 um for L(24 mu) < 1E11 L(sun). At higher luminosities, EW (6.2 mu) anti-correlates with L(24 um). Intriguingly, high-z ULIRGs and SMG lie above the local EW (6.2 um) - L(24 um) relationship suggesting that, at a given luminosity, high-z ULIRGs have AGN contributions to their dust emission lower than those of local counterparts. A quantitative analysis of their morphology shows that most of the luminous IR galaxies have morphologies similar to those of IR-quiet galaxies at the same redshift. All z~2 ULIRGs of our sample are IR-excess BzK galaxies and most of them have L(FIR)/L(1600A) ratios higher than those of starburst galaxies at a given UV slope. The ``IR excess (Daddi et al. 2007) is mostly due to strong 7.7 um PAH emission and under-estimation of UV dust extinction. On the basis of the AGN-powered L (6 um) continuum measured directly from the mid-IR spectra, we estimate an average intrinsic X-ray AGN luminosity of L(2-10 keV) = (0.1 +/- 0.6) 1E43 erg/s, a value substantially lower than the prediction by Daddi et al. (2007).
71 - Barry Rothberg (1 , 2 , 3 2013
We present the first central velocity dispersions (sigma_o) measured from the 0.85 micron Calcium II Triplet (CaT) for 8 advanced (i.e. single nuclei) local (z < 0.15) Ultraluminous Infrared Galaxies (ULIRGs). First, these measurements are used to test the prediction that the sigma-Discrepancy, in which the CaT sigma_o is systematically larger than the sigma_o obtained from the 1.6 or 2.3 micron stellar CO band-heads, extends to ULIRG luminosities. Next, we combine the CaT data with rest-frame I-band photometry obtained from archival Hubble Space Telescope data and the Sloan Digital Sky Survey (SDSS) to derive dynamical properties for the 8 ULIRGs. These are then compared to the dynamical properties of 9,255 elliptical galaxies from the SDSS within the same redshift volume and of a relatively nearby (z < 0.4) sample of 53 QSO host galaxies. A comparison is also made between the I-band and H-band dynamical properties of the ULIRGs. We find four key results: 1) the sigma-Discrepancy extends to ULIRG luminosities; 2) at I-band ULIRGs lie on the Fundamental Plane (FP) in a region consistent with the most massive elliptical galaxies and not low-intermediate mass ellipticals as previously reported in the near-infrared; 3) the I-band M/L of ULIRGs are consistent with an old stellar population, while at H-band ULIRGs appear significantly younger and less massive; and 4) we derive an I-band Kormendy Relation from the SDSS ellipticals and demonstrate that ULIRGs and QSO host galaxies are dynamically similar.
We present T-ReCS high spatial resolution N-band (8-13 micron) spectroscopy of the central regions (a few kpc) of 3 local LIRGs. The nuclear spectra show deep 9.7 micron silicate absorption feature and the high ionization [SIV]10.5 micron emission line, consistent with their optical classification as AGN. The two LIRGs with unresolved mid-IR emission do not show PAH emission at 11.3 micron in their nuclear spectra. The spatially resolved mid-IR spectroscopy of NGC 5135 allows us to separate out the spectra of the Seyfert nucleus, an HII region, and the diffuse region between them on scales of less than 2.5 arcsec ~ 600 pc. The diffuse region spectrum is characterized by strong PAH emission with almost no continuum, whereas the HII region shows PAH emission with a smaller equivalent width as well as [NeII]12.8 micron line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا