Do you want to publish a course? Click here

Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal

358   0   0.0 ( 0 )
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a new method for impulse noise removal from images. It uses the sparsity of images in the Discrete Cosine Transform (DCT) domain. The zeros in this domain give us the exact mathematical equation to reconstruct the pixels that are corrupted by random-value impulse noises. The proposed method can also detect and correct the corrupted pixels. Moreover, in a simpler case that salt and pepper noise is the brightest and darkest pixels in the image, we propose a simpler version of our method. In addition to the proposed method, we suggest a combination of the traditional median filter method with our method to yield better results when the percentage of the corrupted samples is high.



rate research

Read More

Image denoising is one of the preliminary steps in image processing methods in which the presence of noise can deteriorate the image quality. To overcome this limitation, in this paper a improved two-stage fuzzy filter is proposed for filtering salt and pepper noise from the images. In the first-stage, the pixels in the image are categorized as good or noisy based on adaptive thresholding using type-2 fuzzy logic with exclusively two different membership functions in the filter window. In the second-stage, the noisy pixels are denoised using modified ordinary fuzzy logic in the respective filter window. The proposed filter is validated on standard images with various noise levels. The proposed filter removes the noise and preserves useful image characteristics, i.e., edges and corners at higher noise level. The performance of the proposed filter is compared with the various state-of-the-art methods in terms of peak signal-to-noise ratio and computation time. To show the effectiveness of filter statistical tests, i.e., Friedman test and Bonferroni-Dunn (BD) test are also carried out which clearly ascertain that the proposed filter outperforms in comparison of various filtering approaches.
92 - Kai Benning 2020
In recent years, Independent Component Analysis (ICA) has successfully been applied to remove noise and artifacts in images obtained from Three-dimensional Polarized Light Imaging (3D-PLI) at the mesoscale (i.e., 64 $mu$m). Here, we present an automatic denoising procedure for gray matter regions that allows to apply the ICA also to microscopic images, with reasonable computational effort. Apart from an automatic segmentation of gray matter regions, we applied the denoising procedure to several 3D-PLI images from a rat and a vervet monkey brain section.
Sparse Principal Component Analysis (SPCA) is widely used in data processing and dimension reduction; it uses the lasso to produce modified principal components with sparse loadings for better interpretability. However, sparse PCA never considers an additional grouping structure where the loadings share similar coefficients (i.e., feature grouping), besides a special group with all coefficients being zero (i.e., feature selection). In this paper, we propose a novel method called Feature Grouping and Sparse Principal Component Analysis (FGSPCA) which allows the loadings to belong to disjoint homogeneous groups, with sparsity as a special case. The proposed FGSPCA is a subspace learning method designed to simultaneously perform grouping pursuit and feature selection, by imposing a non-convex regularization with naturally adjustable sparsity and grouping effect. To solve the resulting non-convex optimization problem, we propose an alternating algorithm that incorporates the difference-of-convex programming, augmented Lagrange and coordinate descent methods. Additionally, the experimental results on real data sets show that the proposed FGSPCA benefits from the grouping effect compared with methods without grouping effect.
Real-world image noise removal is a long-standing yet very challenging task in computer vision. The success of deep neural network in denoising stimulates the research of noise generation, aiming at synthesizing more clean-noisy image pairs to facilitate the training of deep denoisers. In this work, we propose a novel unified framework to simultaneously deal with the noise removal and noise generation tasks. Instead of only inferring the posteriori distribution of the latent clean image conditioned on the observed noisy image in traditional MAP framework, our proposed method learns the joint distribution of the clean-noisy image pairs. Specifically, we approximate the joint distribution with two different factorized forms, which can be formulated as a denoiser mapping the noisy image to the clean one and a generator mapping the clean image to the noisy one. The learned joint distribution implicitly contains all the information between the noisy and clean images, avoiding the necessity of manually designing the image priors and noise assumptions as traditional. Besides, the performance of our denoiser can be further improved by augmenting the original training dataset with the learned generator. Moreover, we propose two metrics to assess the quality of the generated noisy image, for which, to the best of our knowledge, such metrics are firstly proposed along this research line. Extensive experiments have been conducted to demonstrate the superiority of our method over the state-of-the-arts both in the real noise removal and generation tasks. The training and testing code is available at https://github.com/zsyOAOA/DANet.
Blind image denoising is an important yet very challenging problem in computer vision due to the complicated acquisition process of real images. In this work we propose a new variational inference method, which integrates both noise estimation and image denoising into a unique Bayesian framework, for blind image denoising. Specifically, an approximate posterior, parameterized by deep neural networks, is presented by taking the intrinsic clean image and noise variances as latent variables conditioned on the input noisy image. This posterior provides explicit parametric forms for all its involved hyper-parameters, and thus can be easily implemented for blind image denoising with automatic noise estimation for the test noisy image. On one hand, as other data-driven deep learning methods, our method, namely variational denoising network (VDN), can perform denoising efficiently due to its explicit form of posterior expression. On the other hand, VDN inherits the advantages of traditional model-driven approaches, especially the good generalization capability of generative models. VDN has good interpretability and can be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected in real scenarios. Comprehensive experiments are performed to substantiate the superiority of our method in blind image denoising.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا