Do you want to publish a course? Click here

Status and overview of development of the Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC

117   0   0.0 ( 0 )
 Added by Ryo Ichimiya
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We have developed a silicon pixel detector to enhance the physics capabilities of the PHENIX experiment. This detector, consisting of two layers of sensors, will be installed around the beam pipe at the collision point and covers a pseudo-rapidity of | eta | < 1.2 and an azimuth angle of | phi | ~ 2{pi}. The detector uses 200 um thick silicon sensors and readout chips developed for the ALICE experiment. In order to meet the PHENIX DAQ readout requirements, it is necessary to read out 4 readout chips in parallel. The physics goals of PHENIX require that radiation thickness of the detector be minimized. To meet these criteria, the detector has been designed and developed. In this paper, we report the current status of the development, especially the development of the low-mass readout bus and the front-end readout electronics.



rate research

Read More

191 - K. Ikematsu , Y. Iwata , K. Kaimi 1998
We describe a start-timing detector for the PHENIX experiment at the relativistic heavy-ion collider RHIC. The role of the detector is to detect a nuclear collision, provide precise time information with an accuracy of 50ps, and determine the collision point along the beam direction with a resolution of a few cm. Technical challenges are that the detector must be operational in a wide particle-multiplicity range in a high radiation environment and a strong magnetic field. We present the performance of the prototype and discuss the final design of the detector.
130 - M. Csanad 2007
The latest PHENIX results for particle production are presented in this paper. A suppression of the yield of high p_t (transverse momentum) hadrons in central Au+Au collisions is found. In contrast, direct photons are not suppressed in central Au+Au collisions and no suppression of high p_t particles can be seen in d+Au collisions. This leads to the conclusion that the dense medium formed in central Au+Au collisions is responsible for the suppression. It is as well found, that the properties of this medium are similar to the one of a liquid. Further measurements provide information about the chiral dynamics of the system.
162 - Alexander Kozlov 2006
The production of the low-mass dielectrons is considered to be a powerful tool to study the properties of the hot and dense matter created in the ultra-relativistic heavy-ion collisions. We present the preliminary results on the first measurements of the low-mass dielectron continuum in Au+Au collisions and the phi meson production measured in Au+Au and d+Au collisions at sqrt{s_NN} = 200 GeV performed by the PHENIX experiment.
A plastic scintillator paddle detector with embedded fiber light guides and photomultiplier tube readout, referred to as the Reaction Plane Detector (RXNP), was designed and installed in the PHENIX experiment prior to the 2007 run of the Relativistic Heavy Ion Collider (RHIC). The RXNPs design is optimized to accurately measure the reaction plane (RP) angle of heavy-ion collisions, where, for mid-central $sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, it achieved a $2^{nd}$ harmonic RP resolution of $sim$0.75, which is a factor of $sim$2 greater than PHENIXs previous capabilities. This improvement was accomplished by locating the RXNP in the central region of the PHENIX experiment, where, due to its large coverage in pseudorapidity ($1.0<|eta|<2.8$) and $phi$ (2$pi$), it is exposed to the high particle multiplicities needed for an accurate RP measurement. To enhance the observed signal, a 2-cm Pb converter is located between the nominal collision region and the scintillator paddles, allowing neutral particles produced in the heavy-ion collisions to contribute to the signal through conversion electrons. This paper discusses the design, operation and performance of the RXNP during the 2007 RHIC run.
A Hadron Blind Detector (HBD) is being developed for the PHENIX experiment at RHIC. It consists of a Cherenkov radiator operated with pure CF4 directly coupled in a windowless configuration to a triple-GEM detector element with a CsI photocathode and pad readout. The HBD operates in the bandwidth 6-11.5 eV(110-200 nm). We studied the detector response to minimum ionizing particles and to electrons. We present measurements of the CsI quantum efficiency, which are in very good agreement with previously published results over the bandwidth 6-8.3 eV and extend them up to 10.3 eV. Discharge probability andaging studies of the GEMs and the CsI photocathode in pure CF4 are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا