Detection of the second eclipsing high mass X-ray binary in M 33


Abstract in English

Chandra data of the X-ray source [PMH2004] 47 were obtained in the ACIS Survey of M 33 (ChASeM33) in 2006. During one of the observations, the source varied from a high state to a low state and back, in two other observations it varied from a low state to respectively intermediate states. These transitions are interpreted as eclipse ingress and egresses of a compact object in a high mass X-ray binary system. The phase of mid eclipse is given by HJD 2453997.476+-0.006, the eclipse half angle is 30.6+-1.2 degree. Adding XMM-Newton observations of [PMH2004] 47 in 2001 we determine the binary period to be 1.732479+-0.000027 d. This period is also consistent with ROSAT HRI observations of the source in 1994. No short term periodicity compatible with a rotation period of the compact object is detected. There are indications for a long term variability similar to that detected for Her X-1. During the high state the spectrum of the source is hard (power law spectrum with photon index ~0.85) with an unabsorbed luminosity of 2E37 erg/cm2/s (0.2-4.5 keV). We identify as an optical counterpart a V ~ 21.0mag star with T_eff > 19000 K, log(g) > 2.5. CFHT optical light curves for this star show an ellipsoidal variation with the same period as the X-ray light curve. The optical light curve together with the X-ray eclipse can be modeled by a compact object with a mass consistent with a neutron star or a black hole in a high mass X-ray binary. However, the hard power law X-ray spectrum favors a neutron star as the compact object in this second eclipsing X-ray binary in M 33. Assuming a neutron star with a canonical mass of 1.4 M_sun and the best fit companion temperature of 33000 K, a system inclination i = 72 degree and a companion mass of 10.9 M_sun are implied.

Download