Do you want to publish a course? Click here

Polaron Exchange Model for Ferromagnetic Ordering in Manganite Films

508   0   0.0 ( 0 )
 Added by Yuansha Chen
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In doped manganites, the strong electron-phonon coupling due to the Jahn-Teller effect localizes the conduction-band electrons as polarons. This results in polarons are carriers responsible for transport and ferromagnetic ordering rather than the bare eg electrons, and sequentially polaron exchange model is emerged for describing ferromagnetic ordering. In Pr0.7(Sr1-xCax)0.3MnO3(x=0.3-0.6) epitaxial thin films, for higher-temperature paramagnetic state and lower-temperature ferromagnetic state, both the temperature dependent transports present behaviors of small polaron; for paramagnetic-ferromagnetic transition, the experimental data of Curie temperature are well described by an energy balance expression induced by polaron exchange model. These results demonstrate that the polaron models are proper ways to describe the strongly correlated electrons in the doped manganites.



rate research

Read More

Epitaxial La3/4Ca1/4MnO3/MgO(100) (LCMO) thin films show unusual rhombohedral (R-3c) structure with a new perovskite superstructure due to unique ordering of La and Ca at the A-site positions. Very sharp insulator-metal and para-ferromagnetic phase transitions at temperatures up to TMI ~ TC=295 K were observed. The ordered films were electronically homogeneous down to 1 nm scale as revealed by scanning tunnelling microscopy/spectroscopy. In contrast, orthorhombic and A-site disordered LCMO demonstrate broadened phase transitions as well as mesoscopic phase separation for T<<TC. The unique La/Ca ordering suppresses cation mismatch stress within one super-cell, a~1.55 nm, enhancing electronic homogeneity. Phase separation scenario seems not to be a unique mechanism for CMR as very large CMR=500 % was also observed in A-site ordered films.
Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.
We have performed x-ray linear and circular magnetic dichroism experiments at the Mn L2,3-edge of the La0.7Sr0.3MnO3 ultra thin films. Our measurements show that the antiferromagnetic (AF) insulating phase is stabilized by the interfacial rearrangement of the Mn 3d orbitals, despite the relevant magnetostriction anisotropic effect on the double-exchange ferromagnetic (FM) metallic phase. As a consequence, the Mn atomic magnetic moment orientation and how it reacts to strain differ in the FM and AF phases. In some cases a FM insulating (FMI) phase adds to the AF and FM. Its peculiar magnetic properties include in-plane magnetic anisotropy and partial release of the orbital moment quenching. Nevertheless the FMI phase appears little coupled to the other ones.
217 - T. Amemiya , M. Yano , K. Morita 2009
We report the crystal structure and unconventional magnetic ordering of Cs_2Cu_3CeF_{12}, which is composed of buckled kagome lattice of Cu^{2+} ions. The exchange network in the buckled kagome lattice is fairly anisotropic, so that the present spin system can be divided into two subsystems: alternating Heisenberg chains with strong antiferromagnetic exchange interactions and dangling spins. Although the direct exchange interactions between neighboring spins were found to be all antiferromagnetic, ferromagnetic magnetic ordering of the dangling spins was observed. Magnetization exhibits a plateau at one-third of the saturation magnetization. These observations can be understood in terms of the indirect interaction between dangling spins mediated by the chain spin.
248 - H. Ichikawa , L. Kano , M. Saitoh 2005
We have observed the orbital ordering in the ferromagnetic Mott-insulator Lu2V2O7 by the polarized neutron diffraction technique. The orbital ordering pattern determined from the observed magnetic form factors can be explained in terms of a linear combination of wave functions |yz>, |zx> and |xy>; |0> = (1/3)^(1/2) |xy> + (1/3)^(1/2)|yz> + (1/3)^(1/2) |zx> which is proportional to |(x + y + z)^2 - r^2>; where each orbital is extended toward the center-of-mass of the V tetrahedron. We discuss the stability of the ferromagnetic Lu2V2O7, using a Hubbard Hamiltonian with these three orbitals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا