The heavy quark effects in deep--inelastic scattering in the asymptotic regime $Q^2 gg m^2$ can be described by heavy flavor operator matrix elements. Complete analytic expressions for these objects are currently known to ${sf NLO}$. We present first results for fixed moments at ${sf NNLO}$. This involves a recalculation of fixed moments of the corresponding ${sf NNLO}$ anomalous dimensions, which we thereby confirm.
We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $Q^2 gg m^2$ to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given both in Mellin-$N$ space and $z$-space.
In the asymptotic limit $Q^2 gg m^2$, the heavy flavor Wilson coefficients for deep--inelastic scattering factorize into the massless Wilson coefficients and the universal heavy flavor operator matrix elements resulting from light--cone expansion. In this way, one can calculate all but the power corrections in $(m^2/Q^2)^k, k > 0$. The heavy flavor operator matrix elements are known to ${sf NLO}$. We present the last 2--loop result missing in the unpolarized case for the renormalization at 3--loops and first 3--loop results for terms proportional to the color factor $T_F^2$ in Mellin--space. In this calculation, the corresponding parts of the ${sf NNLO}$ anomalous dimensions cite{LARIN,MVVandim} are obtained as well.
The logarithmic contributions to the massive twist-2 operator matrix elements for deep-inelastic scattering are calculated to $O(alpha_s^3)$for general values of the Mellin variable $N$.
Assuming the ${bar D}^0, D^-, D^-_s$ and $B^+, B^0, B_s^0$ mesons belong to triplets of SU(3) flavor symmetry, we analyse the form factors in the semileptonic decays of these mesons. Both quark and meson mass differences are taken into account. We find a number of relations, in agreement with the present data as well as with previous analyses, and predict certain ratios of form factors, not yet measured, most notably the D meson decay constant $f_D = 209 pm 39$ MeV.
We study the relevance of experimental data on heavy-flavor [$D^0$, $J/psi$, $Brightarrow J/psi$ and $Upsilon(1S)$ mesons] production in proton-lead collisions at the LHC to improve our knowledge of the gluon-momentum distribution inside heavy nuclei. We observe that the nuclear effects encoded in both most recent global fits of nuclear parton densities at next-to-leading order (nCTEQ15 and EPPS16) provide a good overall description of the LHC data. We interpret this as a hint that these are the dominant ones. In turn, we perform a Bayesian-reweighting analysis for each particle data sample which shows that each of the existing heavy-quark(onium) data set clearly points --with a minimal statistical significance of 7 $sigma$-- to a shadowed gluon distribution at small $x$ in the lead. Moreover, our analysis corroborates the existence of gluon antishadowing. Overall, the inclusion of such heavy-flavor data in a global fit would significantly reduce the uncertainty on the gluon density down to $xsimeq 7times 10^{-6}$ --where no other data exist-- while keeping an agreement with the other data of the global fits. Our study accounts for the factorization-scale uncertainties which dominate for the charm(onium) sector.