Do you want to publish a course? Click here

Soft processes at the LHC, II: Soft-hard factorization breaking and gap survival

118   0   0.0 ( 0 )
 Added by Alan D. Martin
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the probability that the rapidity gaps in diffractive processes survive both eikonal and enhanced rescattering. We present arguments that enhanced rescattering, which violates soft-hard factorization, is not very strong. Accounting for NLO effects, there is no reason to expect that the black disc regime is reached at the LHC. We discuss the predictions for the survival of the rapidity gaps for exclusive Higgs production at the LHC.



rate research

Read More

We emphasize the sizeable effects of absorption on high-energy `soft processes, and, hence, the necessity to include multi-Pomeron-Pomeron interactions in the usual multi-channel eikonal description. We present a model which includes a complete set of the multi-Pomeron vertices and which accounts for the diffusion in both, the impact parameter and ln(k_t), of the parton during its evolution in rapidity. We tune the model to the available data for soft processes in the CERN-ISR to Tevatron energy range. We make predictions for `soft observables at the LHC.
226 - A.Efremov , A.Radyushkin 2009
We discuss some problems concerning the application of perturbative QCD to high energy processes. In particular for hard processes, we analyze higher order and higher twist corrections. It is argued that these effects are of great importance for understanding the behaviour of pion electromagnetic form factor at moderately large momentum transfers. For soft processes, we show that summing the contributions of the lowest twist operators leads to a Regge-like amplitude.
Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with factorization and that gives universality between e^+e^- annihilation, semi-inclusive deep-inelastic scattering, and the Drell-Yan process. Universality is only modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan and the other processes, whose only effect is the known reversal of sign for T-odd parton densities like the Sivers function. The modifications of the definitions needed to remove rapidity divergences with light-like Wilson lines do not affect the results.
The QCD improved parton model is a very successful concept to treat processes in hadronic interactions, whenever large partonic transverse momenta are involved. However, cross sections diverge in the limit p_T -> 0, and the usual treatment is the definition of a lower cutoff p_T_min, such that processes with a smaller p_T -- so-called soft processes -- are simply ignored, which is certainly not correct for example at RHIC energies. A more consistent procedure amounts to introduce a technical parameter Q_0^2, referred to as soft virtuality scale, which is nothing but an artificial borderline between soft and hard physics. We will discuss such a formalism, which coincides with the improved parton model for high p_T processes and with the phenomenological treatment of soft scattering, when only small virtualities are involved. The most important aspect of our approach is that it allows to obtain a smooth transition between soft and hard scattering, and therefore no artificial dependence on a cutoff parameter should appear.
Results from recent soft QCD measurements by LHC experiments ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM are reported. The measurements include total, elastic and inelastic cross sections, inclusive and identified particle spectra, underlying event and hadronic chains. Results from particle correlations in all three collision systems, namely pp, pPb and PbPb, exhibit unexpected similarities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا