Do you want to publish a course? Click here

Bimodal behavior of the heaviest fragment distribution in projectile fragmentation

315   0   0.0 ( 0 )
 Added by Eric Bonnet
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The charge distribution of the heaviest fragment detected in the decay of quasi-projectiles produced in intermediate energy heavy-ion collisions has been observed to be bimodal. This feature is expected as a generic signal of phase transition in non-extensive systems. In this paper we present new analyses of experimental data from Au on Au collisions at 60, 80 and 100 MeV/nucleon showing that bimodality is largely independent of the data selection procedure, and of entrance channel effects. An estimate of the latent heat of the transition is extracted.



rate research

Read More

The N/Z dependence of projectile fragmentation at relativistic energies has been studied in a recent experiment at the GSI laboratory with the ALADiN forward spectrometer coupled to the LAND neutron detector. Besides a primary beam of 124Sn, also secondary beams of 124La and 107Sn delivered by the FRS fragment separator have been used in order to extend the range of isotopic compositions of the produced spectator sources. With the achieved mass resolution of Delta A/A approx 1.5%, lighter isotopes with atomic numbers Z le 10 are individually resolved. The presently ongoing analyses of the measured isotope yields focus on isoscaling and its relation to the properties of hot fragments at freeze-out and on the derivation of chemical freeze-out temperatures which are found to be independent of the isotopic composition of the studied systems. The latter result is at variance with the predictions for limiting temperatures as obtained with finite-temperature Hartree-Fock calculations.
We have measured production yields and longitudinal momentum distributions of projectile-like fragments in the reaction 129Xe + 27Al at an energy of Elab=790 AMeV. Production cross sections higher than expected from systematics were observed for nuclei in the neutron-deficient tails of the isotopic distributions. A comparison with previously measured data from the fragmentation of 136Xe ions shows that the production yields strongly depend on the neutron excess of the projectile with respect to the line of beta-stability. The momentum distributions exhibit a dependence on the fragment neutron-to-proton ratio in isobaric chains, which was not expected from systematics so far. This can be interpreted by a higher excitation of the projectile during the formation of neutron-deficient fragments.
310 - Bernard Borderie 2010
The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.
91 - S. Hudan 2005
The characteristics of intermediate mass fragments (IMFs: 3<=Z<=20) produced in mid-peripheral and central collisions are compared. We compare IMFs detected at mid-velocity with those evaporated from the excited projectile-like fragment (PLF*). On average, the IMFs produced at mid-velocity are larger in atomic number, exhibit broader transverse velocity distributions, and are more neutron-rich as compared to IMFs evaporated from the PLF*. In contrast, comparison of mid-velocity fragments associated with mid-peripheral and central collisions reveals that their characteristics are remarkably similar despite the difference in impact parameter. The characteristics of mid-velocity fragments are consistent with low-density formation of the fragments. Neutron deficient isotopes of even Z elements manifest higher kinetic energies than heavier isotopes of the same element for both PLF* and mid-velocity emission. This result may be due to the decay of long-lived excited states in the field of the emitting system.
93 - D. Q. Fang , Y. G. Ma , C. Zhong 2006
The isospin effect and isoscaling behavior in projectile fragmentation have been systematically investigated by a modified statistical abrasion-ablation (SAA) model. The normalized peak differences and reduced isoscaling parameters are found to decrease with ($Z_{proj}-Z$)/$Z_{proj}$ or the excitation energy per nucleon and have no significant dependence on the size of reaction systems. Assuming a Fermi-gas behavior, the excitation energy dependence of the symmetry energy coefficients are tentatively extracted from $alpha$ and $beta$ which looks consistent with the experimental data. It is pointed out that the reduced isoscaling parameters can be used as an observable to study excitation extent of system and asymmetric nuclear equation of state in heavy ion collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا