Do you want to publish a course? Click here

Theory of charged impurity scattering in two dimensional graphene

126   0   0.0 ( 0 )
 Added by Shaffique Adam
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the physics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb impurities affects both the nature of the ground state density profile as well as graphenes transport properties. We discuss the screening of a single Coulomb impurity and the ensemble averaged density profile of graphene in the presence of many randomly distributed impurities. Finally, we discuss graphenes transport properties due to scattering off charged impurities both at low and high carrier density.



rate research

Read More

We have examined the impact of charged impurity scattering on charge carrier transport in bilayer graphene (BLG) by deposition of potassium in ultra-high vacuum at low temperature. Charged impurity scattering gives a conductivity which is supra-linear in carrier density, with a magnitude similar to single-layer graphene for the measured range of carrier densities of 2-4 x 10^12 cm^-2. Upon addition of charged impurities of concentration n_imp, the minimum conductivity Sigma_min decreases proportional to n_imp^-1/2, while the electron and hole puddle carrier density increases proportional to n_imp^1/2. These results for the intentional deposition of potassium on BLG are in good agreement with theoretical predictions for charged impurity scattering. However, our results also suggest that charged impurity scattering alone cannot explain the observed transport properties of pristine BLG on SiO2 before potassium doping.
Since the experimental realization of graphene1, extensive theoretical work has focused on short-range disorder2-5, ripples6, 7, or charged impurities2, 3, 8-13 to explain the conductivity as a function of carrier density sigma_(n)[1,14-18], and its minimum value sigma_min near twice the conductance quantum 4e2/h[14, 15, 19, 20]. Here we vary the density of charged impurities nimp on clean graphene21 by deposition of potassium in ultra high vacuum. At non-zero carrier density, charged impurity scattering produces the ubiquitously observed1, 14-18 linear sigma_(n) with the theoretically-predicted magnitude. The predicted asymmetry11 for attractive vs. repulsive scattering of Dirac fermions is observed. Sigma_min occurs not at the carrier density which neutralizes nimp, but rather the carrier density at which the average impurity potential is zero10. Sigma_min decreases initially with nimp, reaching a minimum near 4e2/h at non-zero nimp, indicating that Sigma_min in present experimental samples does not probe Dirac-point physics14, 15, 19, 20 but rather carrier density inhomogeneity due to the impurity potential3, 9, 10.
The singular density of states and the two Fermi wavevectors resulting from a ring-shaped or Mexican hat valence band give rise to unique trends in the charged impurity scattering rates and charged impurity limited mobilities. Ring shaped valence bands are common features of many monolayer and few-layer two-dimensional materials including the III-VI materials GaS, GaSe, InS, and InSe. The wavevector dependence of the screening, calculated within the random phase approximation, is so strong that it is the dominant factor determining the overall trends of the scattering rates and mobilities with respect to temperature and hole density. Charged impurities placed on the substrate and in the 2D channel are considered. The different wavevector dependencies of the bare Coulomb potentials alter the temperature dependence of the mobilities. Moving the charged impurities 5 $AA$ from the center of the channel to the substrate increases the mobility by an order of magnitude.
We investigate the dynamics of a two-dimensional electron gas (2DEG) under circular polarized microwave radiation in presence of dilute localized impurities. Inspired by recent developments on Floquet topological insulators we obtain the Floquet wavefunctions of this system which allow us to predict the microwave absorption and charge density responses of the electron gas, we demonstrate how these properties can be understood from the underlying semiclassical dynamics even for impurities with a size of around a magnetic length. The charge density response takes the form of a rotating charge density vortex around the impurity that can lead to a significant renormalization of the external microwave field which becomes strongly inhomogeneous on the scale of a cyclotron radius around the impurity. We show that this in-homogeneity can suppress the circular polarization dependence which is theoretically expected for MIRO but which was not observed in MIRO experiments on semiconducting 2DEGs. Our explanation, for this so far unexplained polarization independence, has close similarities with the Azbel-Kaner effect in metals where the interaction length between the microwave field and conduction electrons is much smaller than the cyclotron radius due to skin effect generating harmonics of the cyclotron resonance.
We develop an Effective Medium Theory to study the electrical transport properties of disordered graphene. The theory includes non-linear screening and exchange-correlation effects allowing us to consider experimentally relevant strengths of the Coulomb interaction. Assuming random Coulomb impurities, we calculate the electrical conductivity as a function of gate voltage describing quantitatively the full cross-over from the fluctuations dominated regime around the Dirac point to the large doping regime at high gate voltages. We find that the conductivity at the Dirac point is strongly affected by exchange correlation effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا