Secure communication with feedback is studied. An achievability scheme in which the backward channel is used to generate a shared secret key is proposed. The scenario of binary symmetric forward and backward channels is considered, and a combination of the proposed scheme and Maurers coding scheme is shown to achieve improved secrecy rates. The scenario of a Gaussian channel with perfect output feedback is also analyzed and the Schalkwijk-Kailath coding scheme is shown to achieve the secrecy capacity for this channel.
Secure communication over a wiretap channel is investigated, in which an active adversary modifies the state of the channel and the legitimate transmitter has the opportunity to sense and learn the adversarys actions. The adversary has the ability to switch the channel state and observe the corresponding output at every channel use while the encoder has causal access to observations that depend on the adversarys actions. A joint learning/transmission scheme is developed in which the legitimate users learn and adapt to the adversarys actions. For some channel models, it is shown that the achievable rates, defined precisely for the problem, are arbitrarily close to those obtained with hindsight, had the transmitter known the actions ahead of time. This initial study suggests that there is much to exploit and gain in physical-layer security by learning the adversary, e.g., monitoring the environment.
This paper considers a distributed storage system, where multiple storage nodes can be reconstructed simultaneously at a centralized location. This centralized multi-node repair (CMR) model is a generalization of regenerating codes that allow for bandwidth-efficient repair of a single failed node. This work focuses on the trade-off between the amount of data stored and repair bandwidth in this CMR model. In particular, repair bandwidth bounds are derived for the minimum storage multi-node repair (MSMR) and the minimum bandwidth multi-node repair (MBMR) operating points. The tightness of these bounds are analyzed via code constructions. The MSMR point is characterized through codes achieving this point under functional repair for general set of CMR parameters, as well as with codes enabling exact repair for certain CMR parameters. The MBMR point, on the other hand, is characterized with exact repair codes for all CMR parameters for systems that satisfy a certain entropy accumulation property. Finally, the model proposed here is utilized for the secret sharing problem, where the codes for the multi-node repair problem is used to construct communication efficient secret sharing schemes with the property of bandwidth efficient share repair.
Wireless communication is susceptible to eavesdropping attacks because of its broadcast nature. This paper illustrates how interference can be used to counter eavesdropping and assist secrecy. In particular, a wire-tap channel with a helping interferer (WT-HI) is considered. Here, a transmitter sends a confidential message to its intended receiver in the presence of a passive eavesdropper and with the help of an independent interferer. The interferer, which does not know the confidential message, helps in ensuring the secrecy of the message by sending an independent signal. An achievable secrecy rate and several computable outer bounds on the secrecy capacity of the WT-HI are given for both discrete memoryless and Gaussian channels.
Wireless communication is susceptible to adversarial eavesdropping due to the broadcast nature of the wireless medium. In this paper it is shown how eavesdropping can be alleviated by exploiting the superposition property of the wireless medium. A wiretap channel with a helping interferer (WT-HI), in which a transmitter sends a confidential message to its intended receiver in the presence of a passive eavesdropper, and with the help of an independent interferer, is considered. The interferer, which does not know the confidential message, helps in ensuring the secrecy of the message by sending independent signals. An achievable secrecy rate for the WT-HI is given. The results show that interference can be exploited to assist secrecy in wireless communications. An important example of the Gaussian case, in which the interferer has a better channel to the intended receiver than to the eavesdropper, is considered. In this situation, the interferer can send a (random) codeword at a rate that ensures that it can be decoded and subtracted from the received signal by the intended receiver but cannot be decoded by the eavesdropper. Hence, only the eavesdropper is interfered with and the secrecy level of the confidential message is increased.
In this paper, we establish the connections of the fundamental limitations in feedback communication, estimation, and feedback control over Gaussian channels, from a unifying perspective for information, estimation, and control. The optimal feedback communication system over a Gaussian necessarily employs the Kalman filter (KF) algorithm, and hence can be transformed into an estimation system and a feedback control system over the same channel. This follows that the information rate of the communication system is alternatively given by the decay rate of the Cramer-Rao bound (CRB) of the estimation system and by the Bode integral (BI) of the control system. Furthermore, the optimal tradeoff between the channel input power and information rate in feedback communication is alternatively characterized by the optimal tradeoff between the (causal) one-step prediction mean-square error (MSE) and (anti-causal) smoothing MSE (of an appropriate form) in estimation, and by the optimal tradeoff between the regulated output variance with causal feedback and the disturbance rejection measure (BI or degree of anti-causality) in feedback control. All these optimal tradeoffs have an interpretation as the tradeoff between causality and anti-causality. Utilizing and motivated by these relations, we provide several new results regarding the feedback codes and information theoretic characterization of KF. Finally, the extension of the finite-horizon results to infinite horizon is briefly discussed under specific dimension assumptions (the asymptotic feedback capacity problem is left open in this paper).