Steenrod homotopy


Abstract in English

Steenrod homotopy theory is a framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; from another viewpoint, it studies the topology of the lim^1 functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. We attempt to simplify foundations of the theory and to clarify and improve some of its major results. Using geometric tools such as Milnors telescope compactification, comanifolds (=mock bundles) and the Pontryagin-Thom Construction, we obtain new simple proofs of results by Barratt-Milnor; Cathey; Dydak-Segal; Eda-Kawamura; Edwards-Geoghegan; Fox; Geoghegan-Krasinkiewicz; Jussila; Krasinkiewicz-Minc; Mardesic; Mittag-Leffler/Bourbaki; and of three unpublished results by Shchepin. An error in Lisitsas proof of the Hurewicz theorem in Steenrod homotopy is corrected. It is shown that over compacta, R.H.Foxs overlayings are same as I.M.James uniform covering maps. Other results include: - A morphism between inverse sequences of countable (possibly non-abelian) groups that induces isomorphisms on inverse and derived limits is invertible in the pro-category. This implies the Whitehead theorem in Steenrod homotopy, thereby answering two questions of A.Koyama. - If X is an LC_{n-1} compactum, n>0, its n-dimensional Steenrod homotopy classes are representable by maps S^nto X, provided that X is simply connected. The assumption of simply-connectedness cannot be dropped by a well-known example of Dydak and Zdravkovska. - A connected compactum is Steenrod connected (=pointed 1-movable) iff every its uniform covering space has countably many uniform connected components.

Download