Do you want to publish a course? Click here

Novel Photo-Detectors and Photo-Detector Systems

126   0   0.0 ( 0 )
 Added by Mikhail Danilov
 Publication date 2008
  fields Physics
and research's language is English
 Authors M. Danilov




Ask ChatGPT about the research

Recent developments in photo-detectors and photo-detector systems are reviewed. The main emphasis is made on Silicon Photo-Multipliers (SiPM) - novel and very attractive photo-detectors. Their main features are described. Properties of detectors manufactured by different producers are compared. Different applications are discussed including calorimeters, muon detection, tracking, Cherenkov light detection, and time of flight measurements.



rate research

Read More

Currently a revolution is happening in the development of gaseous detectors of photons and particles. Recently developed gaseous detectors with solid photocathodes are now replacing photosensitive wire chambers, which dominated for years in high energy and space flight experiments. We will review the main developments in this field as well as their applications in high-energy physics, medicine, industry and plasma diagnostics. New results on solid photocathodes coupled with gaseous micropattern/wire detectors will also be presented.
Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. In our institute we are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.
This paper presents the physical concept and test results of sample data of the high-speed hardware true random number generator design based on typically used for High Energy Physics hardware. Main features of this concept are the high speed of the true random numbers generation (tens of Mbt/s), miniature size and estimated lower production cost. This allows the use of such a device not only in large companies and government offices but for the end-user data cryptography, in classrooms, in scientific Monte-Carlo simulations, computer games and any other place where large number of true random numbers is required. The physics of the operations principle of using a Geiger-mode avalanche photo detector is discussed and the high quality of the data collected is demonstrated.
The Ring Imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN are equipped with Hybrid Photo-Detectors. These vacuum photo-detectors are affected by the stray magnetic field of the LHCb magnet, which degrades their imaging properties. This effect increases the error on the Cherenkov angle measurement and would reduce the particle identification capabilities of LHCb. A system has been developed for the RICH2 Ring Imaging Cherenkov detector to perform a detailed characterisation of the magnetic distortion effects. It is described, along with the methods implemented to correct for these effects, restoring the optimal resolution.
58 - M. Suyama , A. Fukasawa , J. Haba 2004
A hybrid photo-detector (HPD) consisting of a photocathode and a multi-pixel avalanche diode (MP-AD) was developed a few years ago. Our previous studies showed that its inherent potential for high resolution photon counting could be further enhanced by reducing fluctuations in charge loss in the dead layer at the entrance of the MP-AD. In this paper, we report on the improvement with the newly developed HPD whose encapsulated MP-AD has a thinner dead layer than before. It is demonstrated that the new HPD has much better energy resolution, which enables clearer counting up to nine photoelectrons. Further enhancement of the photocathode sensitivity of the HPD is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا