Do you want to publish a course? Click here

Reply to Comment [arXiv:0810.3244v1] by R.S. Decca et al. on Contribution of drifting carriers to the Casimir-Lifshitz and Casimir-Polder interactions with semiconductor materials

137   0   0.0 ( 0 )
 Added by Diego Dalvit
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the claims expressed in the Comment arXiv:0810.3244v1 by R.S. Decca et al against our paper, D.A.R. Dalvit and S.K. Lamoreaux, Phys. Rev. Lett. {bf 101}, 163203 (2008), are wrong and manifestly inconsistent with basic principles of statistical physics.



rate research

Read More

In a comment on arXiv:1006.5070v1, Drechsler et al. present new band-structure calculations suggesting that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous calculations. In our reply, we show that their new results are at odds with the observed magnetic structure, that their analysis of the static susceptibility neglects important contributions, and that their criticism of the spin-wave analysis of the bound-state dispersion is unfounded. We further show that their new exact diagonalization results reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
In a comment on arXiv:1006.5070v2, Drechsler et al. claim that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous work. Their comment is based on DMRG and ED calculations of the magnetization curve and the magnetic excitations. We show that their parameters are at odds with the magnetic susceptibility and the magnetic excitation spectrum, once intensities are taken into account, and that the magnetization curve cannot discriminate between largely different parameter sets within experimental uncertainties. We further show that their new exact diagonalization results support the validity of the RPA-approach, and strongly reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
The preceding Comment by Xu et al. (Phys. Rev. Lett. 122, 059803 (2019); arXiv:1808.05390) erroneously applies the entropic stress expression in our Letter (T.C. OConnor et al., Phys. Rev. Lett. 121, 047801 (2018); arXiv:1806.09509) to transient stress. In addition, the authors only apply this expression at extreme extension rates where we clearly showed deviations from the entropic stress expression for steady-state extensional flow. Hence the surprisingly minor discrepancies noted in the Comment between observed and predicted stress are entirely expected and have no bearing on the discussion or conclusions in our Letter.
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the system---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional, velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalised Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atom and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface plasmon frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا