Phenomenology of One-Dimensional Quantum Liquids Beyond the Low-Energy Limit


Abstract in English

We consider zero temperature behavior of dynamic response functions of 1D systems near edges of support in momentum-energy plane $(k, omega).$ The description of the singularities of dynamic response functions near an edge $epsilon(k)$ is given by the effective Hamiltonian of a mobile impurity moving in a Luttinger liquid. For Galilean-invariant systems, we relate the parameters of such an effective Hamiltonian to the properties of the function $epsilon (k).$ This allows us to express the exponents which characterize singular response functions of spinless bosonic or fermionic liquids in terms of $epsilon(k)$ and Luttinger liquid parameters for any $k.$ For an antiferromagnetic Heisenberg spin-1/2 chain in a zero magnetic field, SU(2) invariance fixes the exponents from purely phenomenological considerations.

Download