Do you want to publish a course? Click here

The Formation and Survival of Discs in a Lambda-CDM Universe

124   0   0.0 ( 0 )
 Added by Cecilia Scannapieco
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the formation of galaxies in a Lambda-CDM Universe using high resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at z = 0, none of our galaxies contain a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The z = 0 spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at z = 0 nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at z > ~2, regardless of their z = 0 morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic Lambda-CDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.



rate research

Read More

219 - Aseem Paranjape 2021
We study the radial acceleration relation (RAR) between the total ($a_{rm tot}$) and baryonic ($a_{rm bary}$) centripetal acceleration profiles of central galaxies in the cold dark matter (CDM) paradigm. We analytically show that the RAR is intimately connected with the physics of the quasi-adiabatic relaxation of dark matter in the presence of baryons in deep potential wells. This cleanly demonstrates how the mean RAR and its scatter emerge in the low-acceleration regime ($10^{-12},{rm m,s}^{-2}lesssim a_{rm bary}lesssim10^{-10},{rm m,s}^{-2}$) from an interplay between baryonic feedback processes and the distribution of CDM in dark halos. Our framework allows us to go further and study both higher and lower accelerations in detail, using analytical approximations and a realistic mock catalog of $sim342,000$ low-redshift central galaxies with $M_rleq-19$. We show that, while the RAR in the baryon-dominated, high-acceleration regime ($a_{rm bary}gtrsim10^{-10},{rm m,s}^{-2}$) is very sensitive to details of the relaxation physics, a simple `baryonification prescription matching the relaxation results of hydrodynamical CDM simulations is remarkably successful in reproducing the observed RAR without any tuning. And in the (currently unobserved) ultra-low-acceleration regime ($a_{rm bary}lesssim 10^{-12},{rm m,s}^{-2}$), the RAR is sensitive to the abundance of diffuse gas in the halo outskirts, with our default model predicting a distinctive break from a simple power-law-like relation for HI-deficient, diffuse gas-rich centrals. Our mocks also show that the RAR provides more robust, testable predictions of the $Lambda$CDM paradigm at galactic scales, with implications for alternative gravity theories, than the baryonic Tully-Fisher relation.
We present a detailed analysis of the influence of the environment and of the environmental history on quenching star formation in central and satellite galaxies in the local Universe. We take advantage of publicly available galaxy catalogues obtained from applying a galaxy formation model to the Millennium simulation. In addition to halo mass, we consider the local density of galaxies within various fixed scales. Comparing our model predictions to observational data (SDSS), we demonstrate that the models are failing to reproduce the observed density dependence of the quiescent galaxy fraction in several aspects: for most of the stellar mass ranges and densities explored, models cannot reproduce the observed similar behaviour of centrals and satellites, they slightly under-estimate the quiescent fraction of centrals and significantly over-estimate that of satellites. We show that in the models, the density dependence of the quiescent central galaxies is caused by a fraction of backsplash centrals which have been satellites in the past (and were thus suffering from environmental processes). Turning to satellite galaxies, the density dependence of their quiescent fractions reflects a dependence on the time spent orbiting within a parent halo of a particular mass, correlating strongly with halo mass and distance from the halo centre. Comparisons with observational estimates suggest relatively long gas consumption time scales of roughly 5 Gyr in low mass satellite galaxies. The quenching time scales decrease with increasing satellite stellar mass. Overall, a change in modelling both internal processes (star formation and feedback) and environmental processes (e.g. making them dependent on dynamical friction time-scales and preventing the re-accretion of gas onto backsplash galaxies) is required for improving currently used galaxy formation models.
87 - C.Y. Yaryura 2020
Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than thirty years ago. We study these systems in the cosmological framework of the $Lambda$ Cold Dark Matter ($Lambda$CDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter haloes by applying the semi-analytic model of galaxy formation SAG. We identify galaxy systems using a friends of friends algorithm with a linking length equal to $b=0.4 ,{rm Mpc},h^{-1}$, to reproduce the size of dwarf galaxy associations detected in the Local Volume. Our samples of dwarf systems are built up removing those systems that have one (or more) galaxies with stellar mass larger than a maximum threshold $M_{rm max}$. We analyse three different samples defined by ${rm log}_{10}(M_{rm max}[{rm M}_{odot},h^{-1}]) = 8.5, 9.0$ and $9.5$. On average, our systems have typical sizes of $sim 0.2,{rm Mpc},h^{-1}$, velocity dispersion of $sim 30 {rm km,s^{-1}} $ and estimated total mass of $sim 10^{11} {rm M}_{odot},h^{-1}$. Such large typical sizes suggest that individual members of a given dwarf association reside in different dark matter haloes and are generally not substructures of any other halo. Indeed, in more than 90 per cent of our dwarf systems their individual members inhabit different dark matter haloes, while only in the remaining 10 per cent members do reside in the same halo. Our results indicate that the $Lambda$CDM model can naturally reproduce the existence and properties of dwarf galaxies associations without much difficulty.
181 - Aseem Paranjape 2021
We model the distribution of the observed profiles of 21 cm line emission from neutral hydrogen (HI) in central galaxies selected from a statistically representative mock catalog of the local Universe in the Lambda-cold dark matter framework. The distribution of these HI velocity profiles (specifically, their widths $W_{50}$) has been observationally constrained, but has not been systematically studied theoretically. Our model profiles derive from rotation curves of realistically baryonified haloes in an N-body simulation, including the quasi-adiabatic relaxation of the dark matter profile of each halo in response to its baryons. We study the predicted $W_{50}$ distribution using a realistic pipeline applied to noisy profiles extracted from our luminosity-complete mock catalog with an ALFALFA-like survey geometry and redshift selection. Our default mock is in good agreement with observed ALFALFA results for $W_{50}gtrsim700$ km/s, being incomplete at lower widths due to the intrinsic threshold of $M_rleq-19$. Variations around the default model show that the velocity width function at $W_{50}gtrsim300$ km/s is most sensitive to a possible correlation between galaxy inclination and host concentration, followed by the physics of quasi-adiabatic relaxation. We also study the excess kurtosis of noiseless velocity profiles, obtaining a distribution which tightly correlates with $W_{50}$, with a shape and scatter that depend on the properties of the turbulent HI disk. Our results open the door towards using the shapes of HI velocity profiles as a novel statistical probe of the baryon-dark matter connection.
Understanding the formation and evolution of early-type, spheroid-dominated galaxies is an open question within the context of the hierarchical clustering scenario, particularly, in low-density environments. Our goal is to study the main structural, dynamical, and stellar population properties and assembly histories of field spheroid-dominated galaxies formed in a LCDM scenario to assess to what extend they are consistent with observations. We selected spheroid-dominated systems from a LCDM simulation that includes star formation, chemical evolution and Supernova feedback. A sample of 18 field systems with Mstar <= 6x10^10 Msun that are dominated by the spheroid component. For this sample we estimate the fundamental relations of ellipticals and then compared with current observations. The simulated spheroid galaxies have sizes in good agreement with observations. The bulges follow a Sersic law with Sersic indexes that correlate with the bulge-to-total mass ratios. The structural-dynamical properties of the simulated galaxies are consistent with observed Faber-Jackson, Fundamental Plane, and Tully-Fisher relations. However, the simulated galaxies are bluer and with higher star formation rates than observed isolated early-type galaxies. The archaeological mass growth histories show a slightly delayed formation and more prominent inside-out growth mode than observational inferences based on the fossil record method. The main structural and dynamical properties of the simulated spheroid-dominated galaxies are consistent with observations. This is remarkable since none of them has been tuned to be reproduced. However, the simulated galaxies are blue and star-forming, and with later stellar mass growth histories as compared to observational inferences. This is mainly due to the persistence of extended discs in the simulations. Abridged
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا