Do you want to publish a course? Click here

Analyzing the Effects of Neutron Polarizabilities in Elastic Compton Scattering off ${}^3$He

268   0   0.0 ( 0 )
 Added by Daniel Phillips
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by the fact that a polarized ${}^3$He nucleus behaves as an `effective neutron target, we examine manifestations of neutron electromagnetic polarizabilities in elastic Compton scattering from the Helium-3 nucleus. We calculate both unpolarized and double-polarization observables using chiral perturbation theory to next-to-leading order (${mathcal O}(e^2 Q)$) at energies, $omega leq m_{pi}$, where $m_{pi}$ is the pion mass. Our results show that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities. [Note added in 2018] The qualitative conclusions and analytic formulae presented in this paper are correct, but several of the numerical results are wrong: see the erratum posted as arXiv:1804.01206 for further details. A full suite of corrected numerical results for cross sections and asymmetries can be found in Margaryan et al., arXiv:1804.00956. They can also be obtained as an interactive Mathematica notebook by emailing [email protected].



rate research

Read More

We provide updated predictions for elastic gamma ${}^3$He cross sections and asymmetries that correct erroneous results we published in Phys. Rev. Lett. 98, 232303 (2007) and Nucl. Phys. A 819, 98 (2009).
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $times$ 64 cm NaI(Tl) photon detector and the Gottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $theta^{LAB}_gamma=136.2^circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(gamma,pi^+ n)$. The free proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $alpha-beta= 9.8pm 3.6(stat){}^{2.1}_1.1(syst)pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $alpha +beta=15.2pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $alpha_n=12.5pm 1.8(stat){}^{+1.1}_{-0.6}pm 1.1(model)$ and $beta_n=2.7mp 1.8(stat){}^{+0.6}_{-1.1}(syst)mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $gamma^{(n)}_pi=(58.6pm 4.0)times 10^{-4}fm^4$.
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({vec e},egamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
We apply the cluster-folding (CF) model for $vec{p}+^{6}$He scattering at 200 MeV, where the potential between $vec{p}$ and $^{4}$He is fitted to data on $vec{p}+^{4}$He scattering at 200 MeV. For $vec{p}+^{6}$He scattering at 200 MeV, the CF model reproduces measured differential cross section with no free parameter, We then predict the analyzing power $A_y(q)$ with the CF model, where $q$ is the transfer momentum. Johnson, Al-Khalili and Tostevin construct a theory for one-neutron halo scattering, taking (1) the adiabatic approximation and (2) neglecting the interaction between a valence neutron and a target, and yield a simple relationship between the elastic scattering of a halo nucleus and of its core under certain conditions. We improve their theory with (3) the eikonal approximation in order to determine $A_y(q)$ for $^{6}$He from the data on $A_y(q)$ for $^{4}$He. The improved theory is accurate, when approximation (1)--(3) are good. Among the three approximations, approximation (2) is most essential. The CF model shows that approximation (2) is good in $0.9 < q < 2.4$ fm$^{-1}$. In the improved theory, the $A_y(q)$ for $^{6}$He is the same as that for $^{4}$He. In $0.9 < q < 2.4$ fm$^{-1}$, we then predict $A_y(q)$ for $vec{p}+^{6}$He scattering at 200 MeV from measured $A_y(q)$ for $vec{p}+^{4}$He scattering at 200 MeV. We thus predict $A_y(q)$ with the model-dependent and the model-independent prescription. The ratio of differential cross sections measured for $^{6}$He to that for $^{4}$He is related to the wave function of $^{6}$He. We then determine the radius between $^{4}$He and the center-of-mass of valence two neutrons in $^{6}$He. The radius is 5.77 fm.
140 - A. Deltuva , A. C. Fonseca 2014
Microscopic calculations of four-body collisions become very challenging in the energy regime above the threshold for four free particles. The neutron-${}^3$He scattering is an example of such process with elastic, rearrangement, and breakup channels. We aim to calculate observables for elastic and inelastic neutron-${}^3$He reactions up to 30 MeV neutron energy using realistic nuclear force models. We solve the Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators in the momentum-space framework. The complex-energy method with special integration weights is applied to deal with the complicated singularities in the kernel of AGS equations. We obtain fully converged results for the differential cross section and neutron analyzing power in the neutron-${}^3$He elastic scattering as well as the total cross sections for inelastic reactions. Several realistic potentials are used, including the one with an explicit $Delta$ isobar excitation. There is reasonable agreement between the theoretical predictions and experimental data for the neutron-${}^3$He scattering in the considered energy regime. The most remarkable disagreements are seen around the minimum of the differential cross section and the extrema of the neutron analyzing power. The breakup cross section increases with energy exceeding rearrangement channels above 23 MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا