Do you want to publish a course? Click here

Nucleosynthetic Yields from Collapsars

97   0   0.0 ( 0 )
 Added by Steven Diehl
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The collapsar engine for gamma-ray bursts invokes as its energy source the failure of a normal supernova and the formation of a black hole. Here we present the results of the first three-dimensional simulation of the collapse of a massive star down to a black hole, including the subsequent accretion and explosion. The explosion differs significantly from the axisymmetric scenario obtained in two-dimensional simulations; this has important consequences for the nucleosynthetic yields. We compare the nucleosynthetic yields to those of hypernovae. Calculating yields from three-dimensional explosions requires new strategies in post-process nucleosynthesis; we discuss NuGrids plan for three-dimensional yields.



rate research

Read More

Massive-star binaries can undergo a phase where one of the two stars expands during its advanced evolutionary stage as a giant and envelops its companion, ejecting the hydrogen envelope and tightening its orbit. Such a common envelope phase is required to tighten the binary orbit in the formation of many of the observed X-ray binaries and merging compact binary systems. In the formation scenario for neutron star binaries, the system might pass through a phase where a neutron star spirals into the envelope of its giant star companion. These phases lead to mass accretion onto the neutron star. Accretion onto these common-envelope-phase neutron stars can eject matter that has undergone burning near to the neutron star surface. This paper presents nucleosynthetic yields of this ejected matter, using population synthesis models to study the importance of these nucleosynthetic yields in a galactic chemical evolution context. Depending on the extreme conditions in temperature and density found in the accreted material, both proton-rich and neutron-rich nucleosynthesis can be obtained, with efficient production of neutron rich isotopes of low Z material at the most extreme conditions, and proton rich isotopes, again at low Z, in lower density models. Final yields are found to be extremely sensitive to the physical modeling of the accretion phase. We show that neutron stars accreting in binary common envelopes might be a new relevant site for galactic chemical evolution, and therefore more comprehensive studies are needed to better constrain nucleosynthesis in these objects.
With the recent advent of multi-messenger gravitational-wave astronomy and in anticipation of more sensitive, next-generation gravitational-wave detectors, we investigate the dynamics, gravitational-wave emission, and nucleosynthetic yields of numerous eccentric binary neutron-star mergers having different equations of state. For each equation of state we vary the orbital properties around the threshold of immediate merger, as well as the binary mass ratio. In addition to a study of the gravitational-wave emission including $f$-mode oscillations before and after merger, we couple the dynamical ejecta output from the simulations to the nuclear-reaction network code texttt{SkyNet} to compute nucleosynthetic yields and compare to the corresponding results in the case of a quasi-circular merger. We find that the amount and velocity of dynamically ejected material is always much larger than in the quasi-circular case, reaching maximal values of $M_{rm ej, max} sim 0.1 , M_{odot}$ and $v_{rm max}/c sim 0.75$. At the same time, the properties of this material are rather insensitive to the details of the orbit, such as pericenter distance or post-encounter apoastron distance. Furthermore, while the composition of the ejected matter depends on the orbital parameters and on the equation of state, the relative nucleosynthetic yields do not, thus indicating that kilonova signatures could provide information on the orbital properties of dynamically captured neutron-star binaries.
Abridged: Observed abundances of extremely metal-poor (EMP) stars in the Halo hold clues for the understanding of the ancient universe. Interpreting these clues requires theoretical stellar models at the low-Z regime. We provide the nucleosynthetic yields of intermediate-mass Z=$10^{-5}$ stars between 3 and 7.5 $M_{sun}$, and quantify the effects of the uncertain wind rates. We expect these yields can be eventually used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced EMP stars. By comparing our models and other existing in the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity. We compare our results to observations of CEMP-s stars belonging to the Halo. The yields of intermediate-mass EMP stars reflect the effects of very deep second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. We confirm the reported trend that models with initial metallicity Z$_{ini}$ <= 0.001 give positive yields of $^{12}C, ^{15}N, ^{16}O$, and $^{26}Mg$. The $^{20}Ne, ^{21}Ne$, and $^{24}Mg$ yields, which were reported to be negative at Z$_{ini}$ = 0.0001, become positive for Z=$10^{-5}$. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally-pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. The most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.
38 - Andrew MacFadyen 2000
A variety of stellar explosions powered by black hole accretion are discussed. All involve the failure of neutrino energy deposition to launch a strong supernova explosion. A key quantity which determines the type of high energy transient produced is the ratio of the engine operation time, $rm t_{engine}$, to the time for the explosion to break out of the stellar surface, $rm t_{bo}$. Stars with sufficient angular momentum produce collapsars -- black holes accreting rapidly through a disk -- in their centers. Collapsars can occur in stars with a wide range of radii depending on the amount of pre-collapse mass loss. The stellar radius and jet properties determine the degree of beaming of the explosion. In some cases the stellar envelope serves to focus the explosion to narrow beaming angles. The baryon loading of various models for classical GRBs formed in massive stars is examined and the consequences are explored. For $rm t_{engine} > t_{bo}$, highly relativistic outflow is possible and classical GRBs accompanied by supernovae can be produced. In other cases hyper-energetic, asymmetric supernovae are produced. Longer GRBs ($t gtaprx 100 s$) can be produced by fallback following a weak neutrino-driven supernova explosion.
Double detonations in sub-Chandrasekhar mass carbon-oxygen white dwarfs with helium shell are a potential explosion mechanism for a Type Ia supernova (SNe Ia). It comprises a shell detonation and subsequent core detonation. The focus of our study is on the effect of the progenitor metallicity on the nucleosynthetic yields. For this, we compute and analyse a set of eleven different models with varying core and shell masses at four different metallicities each. This results in a total of 44 models at metallicities between 0.01$Z_odot$ and 3$Z_odot$. Our models show a strong impact of the metallicity in the high density regime. The presence of $^{22}$Ne causes a neutron-excess which shifts the production from $^{56}$Ni to stable isotopes such as $^{54}$Fe and $^{58}$Ni in the $alpha$-rich freeze-out regime. The isotopes of the metallicity implementation further serve as seed nuclei for additional reactions in the shell detonation. Most significantly, the production of $^{55}$Mn increases with metallicity confirming the results of previous work. A comparison of elemental ratios relative to iron shows a relatively good match to solar values for some models. Super-solar values are reached for Mn at 3$Z_odot$ and solar values in some models at $Z_odot$. This indicates that the required contribution of SNe Ia originating from Chandrasekhar mass WDs can be lower than estimated in orevious work to reach solar values of [Mn/Fe] at [Fe/H]$=0$. Our galactic chemical evolution models suggest that SNe Ia from sub-Chandrasekhar mass white dwarfs, along with core-collapse supernovae, could account for more than 80% of the solar Mn abundance. Using metallicity-dependent SN Ia yields helps to reproduce the upward trend of [Mn/Fe] as a function of metallicity for the solar neighborhood. These chemical evolution predictions, however, depend on the massive star yields adopted in the calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا