No Arabic abstract
Bibliometrics has the ambitious goal of measuring science. To this end, it exploits the way science is disseminated trough scientific publications and the resulting citation network of scientific papers. We survey the main historical contributions to the field, the most interesting bibliometric indicators, and the most popular bibliometric data sources. Moreover, we discuss distributions commonly used to model bibliometric phenomena and give an overview of methods to build bibliometric maps of science.
This study analyzes the differences between the category structure of the Universal Decimal Classification (UDC) system (which is one of the widely used library classification systems in Europe) and Wikipedia. In particular, we compare the emerging structure of category-links to the structure of classes in the UDC. With this comparison we would like to scrutinize the question of how do knowledge maps of the same domain differ when they are created socially (i.e. Wikipedia) as opposed to when they are created formally (UDC) using classificatio theory. As a case study, we focus on the category of Arts.
Social bookmarking systems allow users to organise collections of resources on the Web in a collaborative fashion. The increasing popularity of these systems as well as first insights into their emergent semantics have made them relevant to disciplines like knowledge extraction and ontology learning. The problem of devising methods to measure the semantic relatedness between tags and characterizing it semantically is still largely open. Here we analyze three measures of tag relatedness: tag co-occurrence, cosine similarity of co-occurrence distributions, and FolkRank, an adaptation of the PageRank algorithm to folksonomies. Each measure is computed on tags from a large-scale dataset crawled from the social bookmarking system del.icio.us. To provide a semantic grounding of our findings, a connection to WordNet (a semantic lexicon for the English language) is established by mapping tags into synonym sets of WordNet, and applying there well-known metrics of semantic similarity. Our results clearly expose different characteristics of the selected measures of relatedness, making them applicable to different subtasks of knowledge extraction such as synonym detection or discovery of concept hierarchies.
Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidence. Existing vocabularies such as DC Terms and the W3C PROV-O are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. We identify the specific need for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. We present the Provenance, Authoring and Versioning ontology (PAV): a lightweight ontology for capturing just enough descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the PROV-O ontology to support broader interoperability. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. We analyze and compare PAV with related approaches, namely Provenance Vocabulary, DC Terms and BIBFRAME. We identify similarities and analyze their differences with PAV, outlining strengths and weaknesses of our proposed model. We specify SKOS mappings that align PAV with DC Terms.
The Simple Knowledge Organization System (SKOS) is a standard model for controlled vocabularies on the Web. However, SKOS vocabularies often differ in terms of quality, which reduces their applicability across system boundaries. Here we investigate how we can support taxonomists in improving SKOS vocabularies by pointing out quality issues that go beyond the integrity constraints defined in the SKOS specification. We identified potential quantifiable quality issues and formalized them into computable quality checking functions that can find affected resources in a given SKOS vocabulary. We implemented these functions in the qSKOS quality assessment tool, analyzed 15 existing vocabularies, and found possible quality issues in all of them.
Log analysis in Web search showed that user sessions often contain several different topics. This means sessions need to be segmented into parts which handle the same topic in order to give appropriate user support based on the topic, and not on a mixture of topics. Different methods have been proposed to segment a user session to different topics based on timeouts, lexical analysis, query similarity or external knowledge sources. In this paper, we study the problem in a digital library for the social sciences. We present a method based on a thesaurus and a classification system which are typical knowledge organization systems in digital libraries. Five experts evaluated our approach and rated it as good for the segmentation of search sessions into parts that treat the same topic.