No Arabic abstract
We report a measurement of the angular distributions of Drell-Yan dimuons produced using an 800 GeV/c proton beam on a hydrogen target. The polar and azimuthal angular distribution parameters have been extracted over the kinematic range $4.5 < m_{mu mu} < 15$ GeV/c$^2$ (excluding the $Upsilon$ resonance region), $0 < p_T < 4 $ GeV/c, and $0 < x_F < 0.8$. The $p+p$ angular distributions are similar to those of $p+d$, and both data sets are compared with models which attribute the $cos 2 phi$ distribution either to the presence of the transverse-momentum-dependent Boer-Mulders structure function $h_1^perp$ or to QCD effects. The data indicate the presence of both mechanisms. The validity of the Lam-Tung relation in $p+p$ Drell-Yan is also tested.
Results on $phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $phi to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.
Accessing the Sivers TMD function in proton+proton collisions through the measurement of transverse single spin asymmetries (TSSAs) in Drell-Yan and weak boson production is an effective path to test the fundamental QCD prediction of the non-universality of the Sivers function. Furthermore, it provides data to study the spin-flavor structure of valence and sea quarks inside the proton and to test the evolution of parton distributions. The TSSA amplitude, $A_{N}$, has been measured at STAR in proton+proton collisions at $sqrt{s} = 500$ GeV, with a recorded integrated luminosity of 25 pb$^{-1}$. Within relatively large statistical uncertainties, the current data favor theoretical models that include a change of sign for the Sivers function relative to observations in SIDIS measurements, if TMD evolution effects are small. RHIC plans to run proton+proton collisions of transversely polarized beams at $sqrt{s} = 510$ GeV in 2017, delivering an integrated luminosity of 400 pb$^{-1}$. This will allow STAR to perform a precise measurement of TSSAs in both Drell-Yan and weak boson production. The present status and future plans for the Sivers function program at STAR will be discussed as well as other observables sensitive to the non-universality of the Sivers function in the Twist-3 framework, e.g. the TSSA of direct photons.
Inclusive production of $Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120,pm0.006;(stat.),pm 0.010;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.
The Fermilab E866/NuSea Collaboration has measured the Drell-Yan dimuon cross sections in 800 GeV/$c$ $pp$ and $pd$ collisions. This represents the first measurement of the Drell-Yan cross section in $pp$ collisions over a broad kinematic region and the most extensive study to date of the Drell-Yan cross section in $pd$ collisions. The results indicate that recent global parton distribution fits provide a good description of the light antiquark sea in the nucleon over the Bjorken-$x$ range $0.03 lesssim x < 0.15$, but overestimate the valence quark distributions as $x to 1$.
We present measurements of the polarization of the $ J/psi $ produced in 800-GeV proton interactions with a copper target. Polarization of the $ J/psi $ is sensitive to the $ c bar{c} $ production and hadronization processes. A longitudinal polarization is observed at large $ x_{F} $, while at small $ x_{F} $ the state is produced essentially unpolarized or slightly transversely polarized. No significant variation of the polarization is observed versus $ p_{T} $.