Do you want to publish a course? Click here

On the way towards a generalized entropy maximization procedure

555   0   0.0 ( 0 )
 Added by Ugur Tirnakli
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a generalized entropy maximization procedure, which takes into account the generalized averaging procedures and information gain definitions underlying the generalized entropies. This novel generalized procedure is then applied to Renyi and Tsallis entropies. The generalized entropy maximization procedure for Renyi entropies results in the exponential stationary distribution asymptotically for q is between [0,1] in contrast to the stationary distribution of the inverse power law obtained through the ordinary entropy maximization procedure. Another result of the generalized entropy maximization procedure is that one can naturally obtain all the possible stationary distributions associated with the Tsallis entropies by employing either ordinary or q-generalized Fourier transforms in the averaging procedure.



rate research

Read More

176 - Antoine Berut 2013
A single bit memory system is made with a brownian particle held by an optical tweezer in a double-well potential and the work necessary to erase the memory is measured. We show that the minimum of this work is close to the Landauers bound only for very slow erasure procedure. Instead a detailed Jarzynski equality allows us to retrieve the Landauers bound independently on the speed of this erasure procedure. For the two separated subprocesses, i.e. the transition from state 1 to state 0 and the transition from state 0 to state 0, the Jarzynski equality does not hold but the generalized version links the work done on the system to the probability that it returns to its initial state under the time-reversed procedure.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to disentangle the effects of the stochastic process itself relative to the network structure. We introduce a process with two steps, one that selects a pair of interacting nodes and one that determines the direction of interaction as a function of the degrees of the two nodes and a parameter $alpha$ which sets the likelihood of the higher degree node giving its state. Traditional voter model behavior can be recovered within the model. We find that on a complete bipartite network, the traditional voter model is the fastest process. On a random network with power law degree distribution, we observe two regimes. For modest values of $alpha$, exit time is dominated by diffusive drift of the system state, but as the high nodes become more influential, the exit time becomes becomes dominated by frustration effects. For certain selection processes, a short intermediate regime occurs where exit occurs after exponential mixing.
Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Levy processes (Levy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Levy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox $H$-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractional structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. It is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.
Systems with long-range interactions display a short-time relaxation towards Quasi Stationary States (QSS) whose lifetime increases with the system size. In the paradigmatic Hamiltonian Mean-field Model (HMF) out-of-equilibrium phase transitions are predicted and numerically detected which separate homogeneous (zero magnetization) and inhomogeneous (nonzero magnetization) QSS. In the former regime, the velocity distribution presents (at least) two large, symmetric, bumps, which cannot be self-consistently explained by resorting to the conventional Lynden-Bell maximum entropy approach. We propose a generalized maximum entropy scheme which accounts for the pseudo-conservation of additional charges, the even momenta of the single particle distribution. These latter are set to the asymptotic values, as estimated by direct integration of the underlying Vlasov equation, which formally holds in the thermodynamic limit. Methodologically, we operate in the framework of a generalized Gibbs ensemble, as sometimes defined in statistical quantum mechanics, which contains an infinite number of conserved charges. The agreement between theory and simulations is satisfying, both above and below the out of equilibrium transition threshold. A precedently unaccessible feature of the QSS, the multiple bumps in the velocity profile, is resolved by our new approach.
Entropy plays a key role in statistical physics of complex systems, which in general exhibit diverse aspects of emergence on different scales. However, it still remains not fully resolved how entropy varies with the coarse-graining level and the description scale. In this paper, we consider a Yule-type growth model, where each element is characterized by its size being either continuous or discrete. Entropy is then defined directly from the probability distribution of the states of all elements as well as from the size distribution of the system. Probing in detail their relations and time evolutions, we find that heterogeneity in addition to correlations between elements could induce loss of information during the coarse-graining procedure. It is also revealed that the expansion of the size space domain depends on the description level, leading to a difference between the continuous description and the discrete one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا