Do you want to publish a course? Click here

Complete Characterization of Mixing Time for the Continuous Quantum Walk on the Hypercube with Markovian Decoherence Model

89   0   0.0 ( 0 )
 Added by Mohan Sarovar
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The n-dimensional hypercube quantum random walk (QRW) is a particularily appealing example of a quantum walk because it has a natural implementation on a register on $n$ qubits. However, any real implementation will encounter decoherence effects due to interactions with uncontrollable degrees of freedom. We present a complete characterization of the mixing properties of the hypercube QRW under a physically relevant Markovian decoherence model. In the local decoherence model considered the non-unitary dynamics are modeled as a sum of projections on individual qubits to an arbitrary direction on the Bloch sphere. We prove that there is always classical (asymptotic) mixing in this model and specify the conditions under which instantaneous mixing textit{always} exists. And we show that the latter mixing property, as well as the classical mixing time, depend heavily on the exact environmental interaction and its strength. Therefore, algorithmic applications of the QRW on the hypercube, if they intend to employ mixing properties, need to consider both the walk dynamics and the precise decoherence model.



rate research

Read More

We define the hitting (or absorbing) time for the case of continuous quantum walks by measuring the walk at random times, according to a Poisson process with measurement rate $lambda$. From this definition we derive an explicit formula for the hitting time, and explore its dependence on the measurement rate. As the measurement rate goes to either 0 or infinity the hitting time diverges; the first divergence reflects the weakness of the measurement, while the second limit results from the Quantum Zeno effect. Continuous-time quantum walks, like discrete-time quantum walks but unlike classical random walks, can have infinite hitting times. We present several conditions for existence of infinite hitting times, and discuss the connection between infinite hitting times and graph symmetry.
142 - Y.M.Min , K.Wang 2016
In this paper, we study the quantum walk on the 2D Penrose Lattice, which is intermediate between periodic and disordered structure. Quantum walk on Penrose Lattice is less efficient in transport comparing to the regular lattices. By calculating the final remaining probability on the initial nodes and estimating the low bound. Our results show that the broken of translational symmetry induces both the localized states and degeneracy of eigenstates at $E=0$, this two differences from regular lattices influence efficiency of quantum walk. Also, we observe the transition from inefficient to efficient transport after introducing the near hopping terms, which suggests that we can adjust the hopping strength and achieve a phase transition progress.
182 - Andrew M. Childs 2009
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.
Adding self-loops at each vertex of a graph improves the performance of quantum walks algorithms over loopless algorithms. Many works approach quantum walks to search for a single marked vertex. In this article, we experimentally address several problems related to quantum walk in the hypercube with self-loops to search for multiple marked vertices. We first investigate the quantum walk in the loopless hypercube. We saw that neighbor vertices are also amplified and that approximately $1/2$ of the system energy is concentrated in them. We show that the optimal value of $l$ for a single marked vertex is not optimal for multiple marked vertices. We define a new value of $l = (n/N)cdot k$ to search multiple marked vertices. Next, we use this new value of $l$ found to analyze the search for multiple marked vertices non-adjacent and show that the probability of success is close to $1$. We also use the new value of $l$ found to analyze the search for several marked vertices that are adjacent and show that the probability of success is directly proportional to the density of marked vertices in the neighborhood. We also show that, in the case where neighbors are marked, if there is at least one non-adjacent marked vertex, the probability of success increases to close to $1$. The results found show that the self-loop value for the quantum walk in the hypercube to search for several marked vertices is $l = (n / N) cdot k $.
Nowadays, quantum simulation schemes come in two flavours. Either they are continuous-time discrete-space models (a.k.a Hamiltonian-based), pertaining to non-relativistic quantum mechanics. Or they are discrete-spacetime models (a.k.a Quantum Walks or Quantum Cellular Automata-based) enjoying a relativistic continuous spacetime limit. We provide a first example of a quantum simulation scheme that unifies both approaches. The proposed scheme supports both a continuous-time discrete-space limit, leading to lattice fermions, and a continuous-spacetime limit, leading to the Dirac equation. The transition between the two can be thought of as a general relativistic change of coordinates, pushed to an extreme. As an emergent by-product of this procedure, we obtain a Hamiltonian for lattice-fermions in curved spacetime with synchronous coordinates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا