Investigation of dephasing rates in an interacting Rydberg gas


Abstract in English

We experimentally and theoretically investigate the dephasing rates of the coherent evolution of a resonantly driven pseudo spin emersed in a reservoir of pseudo spins. The pseudo spin is realized by optically exciting 87 Rb atoms to a Rydberg state. Hence, the upper spin states are coupled via the strong van der Waals interaction. Two different experimental techniques to measure the dephasing rates are shown: the rotary echo technique known from nuclear magnetic resonance physics and electromagnetically induced transparency. The experiments are performed in a dense frozen Rydberg gas, either confined in a magnetic trap or in an optical dipole trap. Additionally, a numerical simulation is used to analyse the dephasing in the rotary echo experiments.

Download