Mechanics of Stabbing: Biaxial Measurement of Knife Stab Penetration of Skin Simulant


Abstract in English

In medicolegal situations, the consequences of a stabbing incident are described in terms that are qualitative without being quantitative. Here, the mechanical variables involved in knife-tissue penetration events are used to determine the parameters needed to be controlled in a measurement device. They include knife geometry, in-plane mechanical stress state of skin, angle and speed of knife penetration, and underlying fascia. Four household knives with different geometries were used. Synthetic materials were used to simulate the response of skin, fat and cartilage: polyurethane, foam, and ballistic soap, respectively. The force and energy applied by the blade and the skin displacement were used to identify skin penetration. The skin tension is shown to have a direct effect on the force and energy for knife penetration and on the depth of displacement of the simulant prior to penetration: larger levels of in-plane tension in the skin are associated with lower penetration forces, energies and displacements. Less force and energy are required for puncture when the blade is parallel to a direction of greater skin tension than when perpendicular. Surprisingly, evidence suggests that the quality control processes used to manufacture knives fail to produce consistently uniform blade points in nominally identical knives, leading to penetration forces which can vary widely.

Download