Long-time self-similar asymptotic of the macroscopic quantum models


Abstract in English

The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equation for unipolar case or coupled nonlinear fourth-order parabolic system for bipolar case. We show for the first time the self-similarity property of the macroscopic quantum models in large time. Namely, we show that there exists a unique global strong solution with strictly positive density to the initial value problem of the macroscopic quantum models which tends to a self-similar wave (which is not the exact solution of the models) in large time at an algebraic time-decay rate.

Download