Do you want to publish a course? Click here

Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED

217   0   0.0 ( 0 )
 Added by David Blaschke
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the possibility of experimental verification of vacuum e^+e^- pair creation at the focus of two counter-propagating optical laser beams with intensities 10^{20}-10^{22} W/cm^2, achievable with present-day petawatt lasers, and approaching the Schwinger limit: 10^{29} W/cm^2 to be reached at ELI. Our approach is based on the collisionless kinetic equation for the evolution of the e^+ and e^- distribution functions governed by a non-Markovian source term for pair production. As possible experimental signals of vacuum pair production we consider e^+e^- annihilation into gamma-pairs and the refraction of a high-frequency probe laser beam by the produced e^+e^- plasma. We discuss the dependence of the dynamical pair production process on laser wavelength, with special emphasis on applications in the X-ray domain (X-FEL), as well as the prospects for mu^+mu^- and pi^+pi^- pair creation at high-intensity lasers. We investigate perspectives for using high-intensity lasers as ``boosters of ion beams in the few-GeV per nucleon range, which is relevant, e.g., to the exploration of the QCD phase transition in laboratory experiments.

rate research

Read More

153 - C. D. Baird 2018
Collisions between high intensity laser pulses and energetic electron beams are now used to measure the transition between the classical and quantum regimes of light-matter interactions. However, the energy spectrum of laser-wakefield-accelerated electron beams can fluctuate significantly from shot to shot, making it difficult to clearly discern quantum effects in radiation reaction, for example. Here we show how this can be accomplished in only a single laser shot. A millimeter-scale pre-collision drift allows the electron beam to expand to a size larger than the laser focal spot and develop a correlation between transverse position and angular divergence. In contrast to previous studies, this means that a measurement of the beams energy-divergence spectrum automatically distinguishes components of the beam that hit or miss the laser focal spot and therefore do and do not experience radiation reaction.
102 - T. G. Blackburn 2019
Charged particles accelerated by electromagnetic fields emit radiation, which must, by the conservation of momentum, exert a recoil on the emitting particle. The force of this recoil, known as radiation reaction, strongly affects the dynamics of ultrarelativistic electrons in intense electromagnetic fields. Such environments are found astrophysically, e.g. in neutron star magnetospheres, and will be created in laser-matter experiments in the next generation of high-intensity laser facilities. In many of these scenarios, the energy of an individual photon of the radiation can be comparable to the energy of the emitting particle, which necessitates modelling not only of radiation reaction, but quantum radiation reaction. The worldwide development of multi-petawatt laser systems in large-scale facilities, and the expectation that they will create focussed electromagnetic fields with unprecedented intensities $> 10^{23}~mathrm{W}text{cm}^{-2}$, has motivated renewed interest in these effects. In this paper I review theoretical and experimental progress towards understanding radiation reaction, and quantum effects on the same, in high-intensity laser fields that are probed with ultrarelativistic electron beams. In particular, we will discuss how analytical and numerical methods give insight into new kinds of radiation-reaction-induced dynamics, as well as how the same physics can be explored in experiments at currently existing laser facilities.
We demonstrate the possibility of probing for the first time the fully nonperturbative regime of quantum electrodynamics. By using tightly compressed and focused electron beams in a 100 GeV-class particle collider, beamstrahlung radiation losses can be mitigated, allowing the particles to experience extreme electromagnetic fields. Three-dimensional particle-in-cell simulations confirm the viability of this approach. The experimental forefront envisaged has the potential to establish a novel research field and to stimulate the development of a new theoretical methodology for this yet unexplored regime of strong-field quantum electrodynamics.
110 - Thomas Heinzl 2011
This contribution presents an overview of fundamental QED processes in the presence of an external field produced by an ultra-intense laser. The discussion focusses on the basic intensity effects on vacuum polarisation and the prospects for their observation. Some historical remarks are added where appropriate.
The properties of the forced oscillations of electron-positron plasma (EPP) generated from vacuum under the action of a short laser pulse are considered. Calculating the density of the conduction and polarization currents within the quantum kinetic approach, we demonstrate the presence of plasma oscillations at the frequency of the external field and its odd harmonics. It is expected that radiation generated by these plasma oscillations can be observed outside the interaction region, for example, outside the focal spot of two counterpropagating laser beams, and can serve as an indicator of the Schwinger mechanism of the EPP creation from vacuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا