No Arabic abstract
We study the flow of an incompressible liquid film down a wavy incline. Applying a Galerkin method with only one ansatz function to the Navier-Stokes equations we derive a second order weighted residual integral boundary layer equation, which in particular may be used to describe eddies in the troughs of the wavy bottom. We present numerical results which show that our model is qualitatively and quantitatively accurate in wide ranges of parameters, and we use the model to study some new phenomena, for instance the occurrence of a short wave instability for laminar flows which does not exist over flat bottom.
Modeling the effect of complex terrain on high Reynolds number flows is important to improve our understanding of flow dynamics in wind farms and the dispersion of pollen and pollutants in hilly or mountainous terrain as well as the flow in urban areas. Unfortunately, simulating high Reynolds number flows over complex terrain is still a big challenge. Therefore, we present a simplified version of the wall modeled immersed boundary method by Chester et al. (J. Comput. Phys. 2007; 225: 427-448). By preventing the extrapolation and iteration steps in the original method, the proposed approach is much easier to implement and more computationally efficient. Furthermore, the proposed method only requires information that is available to each processor and thus is much more efficient for simulations performed on a large number of cores. These are crucial considerations for algorithms that are deployed on modern supercomputers and will allow much higher grid resolutions to be considered. We validate our method against wind tunnel measurements for turbulent flows over wall-mounted cubes, a two dimensional ridge, and a three-dimensional hill. We find very good agreement between the simulation results and the measurement data, which shows this method is suitable to model high Reynolds number flows over complex terrain.
We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupted by the formation of force chains. Low frequency oscillations between ordered and disordered states take place over weakly bumpy bases; higher-frequency oscillations over strongly bumpy bases involve the formation of particle chains that extend to the base and interrupt the phase change. The predicted frequency and amplitude of the oscillations induced by the unstable part of the equation of state are similar to those seen in the simulations and they depend upon the contact stiffness in the same way. Such oscillations could be the source of sound produced by flowing sand.
A problem of diffraction by an elongated body of revolution is studied. The incident wave falls along the axis. The wavelength is small comparatively to the dimensions of the body. The parabolic equation of the diffraction theory is used to describe the diffraction process. A boundary integral equation is derived. The integral equation is solved analytically and by iterations for diffraction by a cone.
In the case of favorable pressure gradient, Oleinik proved the global existence of classical solution for the 2-D steady Prandtl equation for a class of positive data. In the case of adverse pressure gradient, an important physical phenomena is the boundary layer separation. In this paper, we prove the boundary layer separation for a large class of Oleiniks data and confirm Goldsteins hypothesis concerning the local behavior of the solution near the separation, which gives a partial answer to open problem 5 proposed by Oleinik and Samokin in cite{Olei}.
We study the asymptotic behaviour of sharp front solutions arising from the nonlinear diffusion equation theta_t = (D(theta)theta_x)_x, where the diffusivity is an exponential function D({theta}) = D_o exp(betatheta). This problem arises for example in the study of unsaturated flow in porous media where {theta} represents the liquid saturation. For physical parameters corresponding to actual porous media, the diffusivity at the residual saturation is D(0) = D_o << 1 so that the diffusion problem is nearly degenerate. Such problems are characterised by wetting fronts that sharply delineate regions of saturated and unsaturated flow, and that propagate with a well-defined speed. Using matched asymptotic expansions in the limit of large {beta}, we derive an analytical description of the solution that is uniformly valid throughout the wetting front. This is in contrast with most other related analyses that instead truncate the solution at some specific wetting front location, which is then calculated as part of the solution, and beyond that location the solution is undefined. Our asymptotic analysis demonstrates that the solution has a four-layer structure, and by matching through the adjacent layers we obtain an estimate of the wetting front location in terms of the material parameters describing the porous medium. Using numerical simulations of the original nonlinear diffusion equation, we demonstrate that the first few terms in our series solution provide approximations of physical quantities such as wetting front location and speed of propagation that are more accurate (over a wide range of admissible {beta} values) than other asymptotic approximations reported in the literature.