No Arabic abstract
The classification of life should be based upon the fundamental mechanism in the evolution of life. We found that the global relationships among species should be circular phylogeny, which is quite different from the common sense based upon phylogenetic trees. The genealogical circles can be observed clearly according to the analysis of protein length distributions of contemporary species. Thus, we suggest that domains can be defined by distinguished phylogenetic circles, which are global and stable characteristics of living systems. The mechanism in genome size evolution has been clarified; hence main component questions on C-value enigma can be explained. According to the correlations and quasi-periodicity of protein length distributions, we can also classify life into three domains.
The problem of the directionality of genome evolution is studied from the information-theoretic view. We propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer between genomes. The function-coding information quantity of a genome consists of two parts, p-coding information quantity which encodes functional protein and n-coding information quantity which encodes other functional elements except amino acid sequence. The relation of the proposed law to the thermodynamic laws is indicated. The evolutionary trends of DNA sequences revealed by bioinformatics are investigated which afford further evidences on the evolutionary law. It is argued that the directionality of genome evolution comes from species competition adaptive to environment. An expression on the evolutionary rate of genome is proposed that the rate is a function of Darwin temperature (describing species competition) and fitness slope (describing adaptive landscape). Finally, the problem of directly experimental test on the evolutionary directionality is discussed briefly.
Much evolutionary information is stored in the fluctuations of protein length distributions. The genome size and non-coding DNA content can be calculated based only on the protein length distributions. So there is intrinsic relationship between the coding DNA size and non-coding DNA size. According to the correlations and quasi-periodicity of protein length distributions, we can classify life into three domains. Strong evidences are found to support the order in the structures of protein length distributions.
In spring turnip rape (Brassica rapa L. spp. oleifera) the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homologue of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using 8 GISH (genomic in situ hybridization) and BAC-FISH (bacterial artificial chromosome fluorescence in situ hybridization) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in sub-terminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.
We have simulated the evolution of sexually reproducing populations composed of individuals represented by diploid genomes. A series of eight bits formed an allele occupying one of 128 loci of one haploid genome (chromosome). The environment required a specific activity of each locus, this being the sum of the activities of both alleles located at the corresponding loci on two chromosomes. This activity is represented by the number of bits set to zero. In a constant environment the best fitted individuals were homozygous with alleles activities corresponding to half of the environment requirement for a locus (in diploid genome two alleles at corresponding loci produced a proper activity). Changing the environment under a relatively low recombination rate promotes generation of more polymorphic alleles. In the heterozygous loci, alleles of different activities complement each other fulfilling the environment requirements. Nevertheless, the genetic pool of populations evolves in the direction of a very restricted number of complementing haplotypes and a fast changing environment kills the population. If simulations start with all loci heterozygous, they stay heterozygous for a long time.
The genetic structure of human populations is extraordinarily complex and of fundamental importance to studies of anthropology, evolution, and medicine. As increasingly many individuals are of mixed origin, there is an unmet need for tools that can infer multiple origins. Misclassification of such individuals can lead to incorrect and costly misinterpretations of genomic data, primarily in disease studies and drug trials. We present an advanced tool to infer ancestry that can identify the biogeographic origins of highly mixed individuals. reAdmix is an online tool available at http://chcb.saban-chla.usc.edu/reAdmix/.