Do you want to publish a course? Click here

Direct observation of the basic mechanisms of Pd island nucleation on Au(111)

151   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The formation mechanisms of evaporated Pd islands on the reconstructed Au(111) $22 /times /sqrt{3}$ herringbone surface have been here studied by Scanning Tunneling Microscopy (STM) at room temperature. Atomically resolved STM images at the very early stages of growth provide a direct observation of the mechanisms involved in preferential Pd islands nucleation at the elbows of the herringbone structure. At low Pd coverage the Au(111) herringbone structure remains substantially unperturbed and isolated Pd atoms settled in hollow sites between Au atoms are found nearby the elbows and the distortions of the reconstructed surface. In the same regions, at extremely low coverage (0.003 ML), substituted Pd atoms in lattice sites of the Au(111) surface are also observed, revealing the occurrence of a place exchange mechanism. Substitution seems to play a fundamental role in the nucleation process, forming aggregation centers for incoming atoms and thus leading to the ordered growth of Pd islands on Au(111). Atomically resolved STM images of Pd islands reveal a close-packed arrangement with lattice parameter close to the interatomic distance between gold atoms in the fcc regions of the Au(111) surface. Distortion of the herringbone structure for Pd coverages higher than 0.25 ML indicates strong interaction between the growing islands and the topmost Au(111) layer.



rate research

Read More

Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material in a controlled manner to quantify the relative effects of the impurity content on grain boundary structure and thin film nucleation. Atomic force microscopy (AFM) has been employed to directly characterize films grown using 0.0-7.5% PnQ by weight in the source material. Analysis of the distribution of capture zones areas of submonolayer islands as a function of impurity content shows that for large PnQ content the critical nucleus size for forming a Pn island is smaller than for low PnQ content. This result indicates a favorable energy for formation of Pn-PnQ complexes, which in turn suggests that the primary effect of PnQ on Pn mobility may arise from homogeneous distribution of PnQ defects.
127 - P. Kocan 2004
We present a combined experimental and theoretical study of submonolayer heteroepitaxial growth of Ag on Si(111)-7x7 at temperatures from 420 K to 550 K when Ag atoms can easily diffuse on the surface and the reconstruction 7x7 remains stable. STM measurements for coverages from 0.05 ML to 0.6 ML show that there is an excess of smallest islands (each of them fills up just one half-unit cell - HUC) in all stages of growth. Formation of 2D wetting layer proceeds by continuous nucleation of the smallest islands in the proximity of larger 2D islands (extended over several HUCs) and following coalescence with them. Such a growth scenario is verified by kinetic Monte Carlo simulation which uses a coarse-grained model based on a limited capacity of HUC and a mechanism which increases nucleation probability in a neighbourhood of already saturated HUCs (correlated nucleation). The model provides a good fit for experimental dependences of the relative number of Ag-occupied HUCs and the preference in occupation of faulted HUCs on temperature and amount of deposited Ag. Parameters obtained for the hopping of Ag adatoms between HUCs agree with those reported earlier for initial stages of growth. The model provides two new parameters - maximum number of Ag atoms inside HUC, and on HUC boundary.
Magnetometry and neutron scattering have been used to study the magnetic properties of pressure graded Co/Pd multilayers. The grading of the multilayer structure was done by varying the deposition pressure during sputtering of the samples. Magnetic depth profiling by polarized neutron reflectometry directly shows that for pressure-graded samples, the magnetization changes significantly from one pressure region to the next, while control samples sputtered at uniform pressure exhibit essentially uniform magnetic depth profiles. Complementary magnetometry results suggest that the observed graded magnetic profiles are due in part to a decrease in saturation magnetization for regions deposited at progressively higher pressure. Increased deposition pressure is shown to increase coercivity, and for graded samples, the absence of discrete steps in the hysteresis loops implies exchange coupling among regions deposited at different pressures.
129 - Sungho Kim , Seong-Gon Kim , 2007
We determine the ground-state structure of a double vacancy in a hydrogen monolayer on the Pd(111) surface. We represent the double vacancy as a triple vacancy containing one additional hydrogen atom. The potential-energy surface for a hydrogen atom moving in the triple vacancy is obtained by density-functional theory, and the wave function of the fully quantum hydrogen atom is obtained by solving the Schrodinger equation. We find that an H atom in a divacancy defect experiences significant quantum effects, and that the ground-state wave function is centered at the hcp site rather than the fcc site normally occupied by H atoms on Pd(111). Our results agree well with scanning tunneling microscopy images.
205 - Y. Murata , S. Nie , A. Ebnonnasir 2012
Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multiple rotational orientations relative to each other and the substrate plane. We observed heterogeneous nucleation and simultaneous growth of multiple, faceted layers prior to the completion of second layer. We propose that the facetted shapes are due to the zigzag-terminated edges bounding graphene layers growing under the larger overlying layers. We also found that the work functions of bilayer graphene domains are higher than those of monolayer graphene, and depend sensitively on the orientations of both layers with respect to the substrate. Based on first-principles simulations, we attribute this behavior to oppositely oriented electrostatic dipoles at the graphene/Pd and graphene/graphene interfaces, whose strengths depend on the orientations of the two graphene layers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا