Trasferring $L^p$ eigenfunction bounds from $S^{2n+1}$ to $h^n$


Abstract in English

By using the notion of contraction of Lie groups, we transfer $L^p-L^2$ estimates for joint spectral projectors from the unit complex sphere $sfera$ in ${{mathbb{C}}}^{n+1}$ to the reduced Heisenberg group $h^{n}$. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on $h^n$. As a consequence, we prove, in the spirit of Sogges work, a discrete restriction theorem for the sub-Laplacian $L$ on $h^n$.

Download