Do you want to publish a course? Click here

Anomalous Hall voltage rectification and quantized spin-wave excitation induced by the simultaneous dc- and rf-current application in Ni81Fe19 wire

145   0   0.0 ( 0 )
 Added by Akinobu Yamaguchi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

An anomalous Hall effect and rectification of a Hall voltage are observed by applying a radio-frequency (rf) current through a single-layered ferromagnetic wire located on a coplanar waveguide. The components of the magnetization precession, both in and perpendicular to the plane, can be detected via the Hall voltage rectification of the rf current by incorporating an additional direct (dc) current. In this paper, we propose a phenomenological model, which describes the time-dependent anisotropic magnetoresistance and time-dependent planer Hall effect. The nonlinearity of the spin dynamics accompanied by spin-waves as functions of rf and dc currents is also studied, as well as those of the magnitude and orientation of the external magnetic field.



rate research

Read More

Experimental results of rectification of a constant wave radio frequency (RF) current flowing in a single-layered ferromagnetic wire are presented. We show that a detailed external magnetic field dependence of the RF current induced a direct-current voltage spectrum. The mechanism of the rectification is discussed in a term of the spin transfer torque, and the rectification is closely related to resonant spin wave excitation with the assistant of the spin-polarized RF current. The micromagnetic simulation taking into account the spin transfer torque provides strong evidence which supports the generation of spin wave excitation by the RF current.
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, an abrupt breakdown of the dissipationless state occurs with a relatively small critical current, limiting the applications of the QAHE. We investigate the mechanism of this breakdown by studying multi-terminal devices and identified that the electric field created between opposing chiral edge states lies at the origin. We propose that electric-field-driven percolation of two-dimensional charge puddles in the gapped surface states of compensated topological-insulator films is the most likely cause of the breakdown.
261 - Rui Yu , Wei Zhang , H. J. Zhang 2010
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
We theoretically study the recently observed tunnel-barrier-enhanced dc voltage signals generated by magnetization precession in magnetic tunnel junctions. While the spin pumping is suppressed by the high tunneling impedance, two complimentary processes are predicted to result in a sizable voltage generation in ferromagnet (F)|insulator (I)|normal-metal (N) and F|I|F junctions, with one ferromagnet being resonantly excited. Magnetic dynamics in F|I|F systems induces a robust charge pumping, translating into voltage in open circuits. In addition, dynamics in a single ferromagnetic layer develops longitudinal spin accumulation inside the ferromagnet. A tunnel barrier then acts as a nonintrusive probe that converts the spin accumulation into a measurable voltage. Neither of the proposed mechanisms suffers from spin relaxation, which is typically fast on the scale of the exponentially slow tunneling rates. The longitudinal spin-accumulation buildup, however, is very sensitive to the phenomenological ingredients of the spin-relaxation picture.
We develop a self-consistent theory for current-induced spin wave excitations in normal metal-magnetic insulator bilayer systems, thereby establishing the relation between spin wave excitation and the experimentally controlled parameters. We fully take into account the complex spin wave spectrum including dipolar interactions and surface anisotropy as well as the spin-pumping at the interface. Our results focus on the mode-dependent power close to the critical currents for spin wave excitation. The major findings are (a) the spin transfer torque can excite different spin-wave modes simultaneously; (b) spin pumping counterbalances spin-transfer torque and affects the surface modes more than the bulk modes; (c) spin pumping inhibits high frequency spin-wave modes, thereby redshifting the excitation spectrum. We can get agreement with experiments on yttrium iron garnet|platinum bilayers by postulating the existence of surface anisotropy modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا