Do you want to publish a course? Click here

Chiral Partners and their Electromagnetic Radiation -- Ingredients for a systematic in-medium calculation

102   0   0.0 ( 0 )
 Added by Stefan Leupold
 Publication date 2008
  fields
and research's language is English
 Authors S. Leupold




Ask ChatGPT about the research

It is argued that the chiral partners of the lowest-lying hadrons are hadronic molecules and not three-quark or quark-antiquark states, respectively. As an example the case of a_1 as the chiral partner of the rho is discussed. Deconfinement -- or as a precursor large in-medium widths for hadronic states -- is proposed as a natural way to accommodate for the fact that at chiral restoration the respective in-medium spectra of chiral partners must become degenerate. Ingredients for a systematic and self-consistent in-medium calculation are presented with special emphasis on vector-meson dominance which emerges from a recently proposed systematic counting scheme for the mesonic sector including pseudoscalar and vector mesons as active degrees of freedom.



rate research

Read More

106 - Stefan Leupold 2008
The isovector--vector and the isovector--axial-vector current are related by a chiral transformation. These currents can be called chiral partners at the fundamental level. In a world where chiral symmetry was not broken, the corresponding current-current correlators would show the same spectral information. In the real world chiral symmetry is spontaneously broken. A prominent peak -- the rho-meson -- shows up in the vector spectrum (measured in (e^+ e^-)-collisions and tau-decays). On the other hand, in the axial-vector spectrum a broad bump appears -- the a_1-meson (also accessible in tau-decays). It is tempting to call rho and a_1 chiral partners at the hadronic level. Strong indications are brought forward that these ``chiral partners do not only differ in mass but even in their nature: The rho-meson appears dominantly as a quark-antiquark state with small modifications from an attractive pion-pion interaction. The a_1-meson, on the other hand, can be understood as a meson-molecule state mainly formed by the attractive interaction between pion and rho-meson. A key issue here is that the meson-meson interactions are fixed by chiral symmetry breaking. It is demonstrated that one can understand the vector and the axial-vector spectrum very well within this interpretation. It is also shown that the opposite cases, namely rho as a pion-pion molecule or a_1 as a quark-antiquark state lead to less satisfying results. Finally speculations on possible in-medium changes of hadron properties are presented.
We present a unified Dyson-Schwinger equation treatment of static and electromagnetic properties of pseudoscalar and vector mesons, and scalar and axial-vector diquark correlations, based upon a vector-vector contact-interaction. A basic motivation for this study is the need to document a comparison between the electromagnetic form factors of mesons and those diquarks which play a material role in nucleon structure. This is an important step toward a unified description of meson and baryon form factors based on a single interaction. A notable result, therefore, is the large degree of similarity between related meson and diquark form factors. The simplicity of the interaction enables computation of the form factors at arbitrarily-large spacelike-Q^2, which enables us to expose a zero in the rho-meson electric form factor at z_Q^rho ~ Sqrt[6] m_rho. Notably, r_rho*z_Q^rho ~ r_D*z_Q^D, where r_rho, r_D are, respectively, the electric radii of the rho-meson and deuteron.
Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems requires an open quantum system framework that is capable of treating resonant and nonresonant many-body states on equal footing. Purpose: In this work, we construct the minimal complex-energy configuration interaction approach to describe binding energies and spectra of selected 5 $leq$ A $leq$ 11 nuclei. Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid $^4$He core. The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique. Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly known states. A case in point is our prediction for the pair of unbound mirror nuclei $^{10}$Li-$^{10}$N in which a huge Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations. Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-line nuclei.
In this talk I summarize recent findings around the description of axial vector mesons as dynamically generated states from the interaction of pseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I review the generation of open and hidden charm scalar and axial states, and how some recent experiment supports the existence of the new hidden charm scalar state predicted. I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels. Then show the differences with the S=0 case, where the $N^*(1710)$ appears also dynamically generated from the two pion one nucleon system, but the $N^*(1440)$ does not appear, indicating a more complex structure of the Roper resonance. Finally I shall show how the state X(2175), recently discovered at BABAR and BES, appears naturally as a resonance of the $phi K bar{K}$ system.
We study the multiplicity and rapidity dependence of thermal and prompt photon production in p+Pb collisions at 5.02 TeV, using a (3+1)D viscous hydrodynamic framework. Direct photon anisotropic flow coefficients $v^gamma_{2,3}$ and nuclear modification factor $R^gamma_mathrm{pPb}(p_T)$ are presented in both the p-going (backward) and the Pb-going (forward) directions. The interplay between initial state cold nuclear effect and final state thermal enhancement at different rapidity regions is discussed. The proposed rapidity dependent thermal photon enhancement and direct photon anisotropic flow observables can elucidate non-trivial longitudinal dynamics of hot quark-gluon plasma droplets created in small collision systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا