Do you want to publish a course? Click here

Charge dynamics of the spin-density-wave state in BaFe$_2$As$_2$

134   0   0.0 ( 0 )
 Added by Degiorgi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a thorough optical investigation of BaFe$_2$As$_2$ over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at $T_{SDW}=135$ K. While BaFe$_2$As$_2$ remains metallic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below $T_{SDW}$, ascribed to the formation of a pseudogap-like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the $dc$ transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition.



rate research

Read More

We report on a thorough optical investigation over a broad spectral range and as a function of temperature of the charge dynamics in Ba(Co$_x$Fe$_{1-x}$)$_2$As$_2$ compounds for Co-doping ranging between 0 and 18%. For the parent compound as well as for $x$=0.025 we observe the opening of a pseudogap, due to the spin-density-wave phase transition and inducing a reshuffling of spectral weight from low to high frequencies. For compounds with 0.051$le x le$ 0.11 we detect the superconducting gap, while at $x$=0.18 the material stays metallic at all temperatures. We describe the effective metallic contribution to the optical conductivity with two Drude terms, representing the combination of a coherent and incoherent component, and extract the respective scattering rates. We establish that the $dc$ transport properties in the normal phase are dominated by the coherent Drude term for 0$le x le$0.051 and by the incoherent one for 0.061$le x le$0.18, respectively. Finally through spectral weight arguments, we give clear-cut evidence for moderate electronic correlations for 0$le x le$0.061, which then crossover to values appropriate for a regime of weak interacting and nearly-free electron metals for $xge$0.11.
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical CDW phase transition, temperature dependent physical properties of single crystals reveal a first-order phase transition. This is accompanied by a discontinuous change in the size of the crystal lattice. In fact, this large strain has catastrophic consequences for the crystals causing them to physically shatter. Single crystal x-ray diffraction reveals super-lattice peaks in the low-temperature phase signaling the development of a CDW lattice modulation. No similar low-temperature transitions are observed in BaCo$_2$Al$_9$. Electronic structure calculations provide one hint to the different behavior of these two compounds; the d-orbital states in the Fe compound are not completely filled. Iron compounds are renowned for their magnetism and partly filled d-states play a key role. It is therefore surprising that BaFe$_2$Al$_9$ develops a structural modulation instead at low temperature instead of magnetic order.
221 - L. X. Yang , Y. Zhang , H. W. Ou 2008
The magnetic properties in the parent compounds are often intimately related to the microscopic mechanism of superconductivity. Here we report the first direct measurements on the electronic structure of a parent compound of the newly discovered iron-based superconductor, BaFe$_2$As$_2$, which provides a foundation for further studies. We show that the energy of the spin density wave (SDW) in BaFe$_2$As$_2$ is lowered through exotic exchange splitting of the band structure, rather than Fermi surface nesting of itinerant electrons. This clearly demonstrates that a metallic SDW state could be solely induced by interactions of local magnetic moments, resembling the nature of antiferromagnetic order in cuprate parent compounds.
A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set in simultaneously at the CDW transition temperature T$_{cdw}$. Here we investigate, using photoemission, X-ray scattering and scanning tunneling microscopy, the canonical CDW compound 2H-NbSe$_2$ intercalated with Mn and Co, and show that the conventional view is untenable. We find that, either at high temperature or at large intercalation, CDW order becomes short-ranged with a well-defined amplitude that impacts the electronic dispersion, giving rise to an energy gap. The phase transition at T$_{cdw}$ marks the onset of long-range order with global phase coherence, leading to sharp electronic excitations. Our observations emphasize the importance of phase fluctuations in strongly coupled CDW systems and provide insights into the significance of phase incoherence in `pseudogap states.
Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such as $A$Fe$_2$As$_2$ ($A=$ Ba, Ca, Sr), although spin excitations have been mapped out throughout the entire Brillouin zone (BZ), measurements were carried out on twinned samples and did not allow for a conclusive determination of the spin dynamics. Here we use inelastic neutron scattering to completely map out spin excitations of $sim$100% detwinned BaFe$_2$As$_2$. By comparing observed spectra with theoretical calculations, we conclude that the spin excitations can be well described by an itinerant model with important contributions from electronic correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا