No Arabic abstract
We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2times 10^5$ M$_odot$ swallow a typical 0.6 M$_odot$ dwarf before their tidal forces can overwhelm the stars self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{rm Edd} simeq 10^{41} {rm erg/s} M_{rm bh}/1000 M$_odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.
Suggestive evidence has accumulated that intermediate mass black holes (IMBH) exist in some globular clusters. As stars diffuse in the cluster, some will inevitable wander sufficiently close to the hole that they suffer tidal disruption. An attractive feature of the IMBH hypothesis is its potential to disrupt not only solar-type stars but also compact white dwarf stars. Attention is given to the fate of white dwarfs that approach the hole close enough to be disrupted and compressed to such extent that explosive nuclear burning may be triggered. Precise modeling of the dynamics of the encounter coupled with a nuclear network allow for a realistic determination of the explosive energy release, and it is argued that ignition is a natural outcome for white dwarfs of all varieties passing well within the tidal radius. Although event rates are estimated to be significantly less than the rate of normal Type Ia supernovae, such encounters may be frequent enough in globular clusters harboring an IMBH to warrant a search for this new class of supernova.
The explosion energy of thermonuclear (Type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light fuel nuclei, predominantly carbon and oxygen, into more tightly bound nuclear ash dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to Type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.
Thermonuclear (Type Ia) supernovae are bright stellar explosions, the light curves of which can be calibrated to allow for use as standard candles for measuring cosmological distances. Contemporary research investigates how the brightness of an event may be influenced by properties of the progenitor system that follow from properties of the host galaxy such as composition and age. The goals are to better understand systematic effects and to assess the intrinsic scatter in the brightness, thereby reducing uncertainties in cosmological studies. We present the results from ensembles of simulations in the single-degenerate paradigm addressing the influence of age and metallicity on the brightness of an event and compare our results to observed variations of brightness that correlate with properties of the host galaxy. We also present results from hybrid progenitor models that incorporate recent advances in stellar evolution.
Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. I then turn to possible observational tests, in particular those that test the absence or presence of electron captures during the burning.
Thermonuclear supernovae (SNe), a subset of which are the highly important SNe Type,Ia, remain one of the more poorly understood phenomena known to modern astrophysics. In recent years, the single degenerate helium (He) donor channel, where a white dwarf star (WD) accretes He-rich matter from a hydrogen-depleted companion, has emerged as a promising candidate progenitor scenario for these events. An unresolved question in this scenario is the fate of the companion star, which would be evident as a runaway hot subdwarf (He sdO/B) in the aftermath of the SN event. Previous studies have shown that the kinematic properties of an ejected companion provide an opportunity to closer examination of the properties of an SN progenitor system. However, with the number of observed objects not matching predictions by theory, the viability of this mechanism is called into question. In this study, we first synthesize a population of companion stars ejected by the aforementioned mechanism, taking into account predicted ejection velocities, inferred population density in the Galactic (Gal.) mass distribution and subsequent kinematics in the Gal. potential. We then discuss the astrometric properties of this population. We present $10^{6}$ individual ejection trajectories, numerically computed with a newly developed, lightweight simulation framework. A peak in the density distribution for close objects is expected in the direction of the Gal. center. If the entire considered mass range is realized, the radial velocity distribution should show a peak at 500kms. If only close US,708 analogues are considered, there should be a peak at ($sim750-850$)kms. We show that the puzzling lack of confirmed surviving companion stars of thermonuclear SNe, though possibly an observation-related selection effect, may indicate a selection against high mass donors in the SD He donor channel. (-abridged-)