With construction halfway complete, IceCube is already the most sensitive neutrino telescope ever built. A rearrangement of the final holes of IceCube with increased spacing has been discussed recently to optimize the high energy sensitivity of the detector. Extending this baseline with radio and acoustic instrumentation in the same holes could further improve the high energy response. The goal would be both to detect events and to act as a pathfinder for hybrid detection, towards a possible larger hybrid array. Simulation results for such an array are presented here.
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to 50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic pulse-like events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to localize acoustic events. Monte Carlo simulations of sound propagating from the established sources to the SPATS sensors have allowed to check corresponding model expectations. An upper limit on the neutrino flux at energies $E_ u > 10^{11}$ GeV is derived from acoustic data taken over eight months.
IceCube is currently being built deep in the glacial ice beneath the South Pole. In its second year of construction, it is already larger than its predecessor, AMANDA. AMANDA continues to collect high energy neutrino and muon data as an independent detector until it is integrated with IceCube. After introducing both detectors, recent results from AMANDA and a status report on IceCube are presented.
We report on studies of the viability and sensitivity of the Askaryan Radio Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at the South Pole. An initial prototype ARA detector system was installed in January 2011, and has been operating continuously since then. We report on studies of the background radio noise levels, the radio clarity of the ice, and the estimated sensitivity of the planned ARA array given these results, based on the first five months of operation. Anthropogenic radio interference in the vicinity of the South Pole currently leads to a few-percent loss of data, but no overall effect on the background noise levels, which are dominated by the thermal noise floor of the cold polar ice, and galactic noise at lower frequencies. We have also successfully detected signals originating from a 2.5 km deep impulse generator at a distance of over 3 km from our prototype detector, confirming prior estimates of kilometer-scale attenuation lengths for cold polar ice. These are also the first such measurements for propagation over such large slant distances in ice. Based on these data, ARA-37, the 200 km^2 array now under construction, will achieve the highest sensitivity of any planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.
Astrophysical neutrinos in the EeV range (particularly those generated by the interaction of cosmic rays with the cosmic microwave background) promise to be a valuable tool to study astrophysics and particle physics at the highest energies. Much could be learned from temporal, spectral, and angular distributions of ~100 events, which could be collected by a detector with ~100 km^3 effective volume in a few years. Scaling the optical Cherenkov technique to this scale is prohibitive. However, using the thick ice sheet available at the South Pole, the radio and acoustic techniques promise to provide sufficient sensitivity with sparse instrumentation. The best strategy may be a hybrid approach combining all three techniques. A new array of acoustic transmitters and sensors, the South Pole Acoustic Test Setup, was installed in three IceCube holes in January 2007. The purpose of SPATS is to measure the attenuation length, background noise, and sound speed for 10-100 kHz acoustic waves. Favorable results would pave the way for a large hybrid array. SPATS is the first array to study the possibility of acoustic neutrino detection in ice, the medium expected to be best for the purpose. First results from SPATS are presented.
The Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect high-energy neutrinos which, via in-ice interactions, produce coherent radiation at frequencies up to 1000 MHz. In Dec. 2018, a custom high-amplitude radio-frequency transmitter was lowered into the 1700 m SPICE ice core to provide test sources for ARA receiver stations sensitive to vertical and horizontal polarizations. For these tests, signal geometries correspond to obliquely propagating radio waves from below. The ARA collaboration has recently measured the polarization-dependent time delay variation, and report more significant time delays for trajectories perpendicular to ice flow. Here we use fabric data from the SPICE ice core to construct a bounding model for the ice birefringence and the polarization time delays across ARA. The data-model comparison is consistent with the vertical girdle fabric at the South Pole having the prevailing horizontal crystallographic axis oriented near-perpendicular to ice flow. This study presents the possibility that ice birefringence can be used to constrain the range to a neutrino interaction, and hence aid in neutrino energy reconstruction, for in-ice experiments such as ARA.