Do you want to publish a course? Click here

Self-organized criticality via stochastic partial differential equations

138   0   0.0 ( 0 )
 Added by Michael R\\\"ockner
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Models of self-organized criticality, which can be described as singular diffusions with or without (multiplicative) Wiener forcing term (as e.g. the Bak/Tang/Wiesenfeld- and Zhang-models), are analyzed. Existence and uniqueness of nonnegative strong solutions are proved. Previously numerically predicted transition to the critical state in 1-D is confirmed by a rigorous proof that this indeed happens in finite time with high probability.



rate research

Read More

189 - Viorel Barbu 2008
The existence and uniqueness of nonnegative strong solutions for stochastic porous media equations with noncoercive monotone diffusivity function and Wiener forcing term is proven. The finite time extinction of solutions with high probability is also proven in 1-D. The results are relevant for self-organized critical behaviour of stochastic nonlinear diffusion equations with critical states.
A large deviation principle is derived for stochastic partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic partial differential equation with small Gaussian perturbation. This also confirms the effectiveness of the approximation of the averaged equation plus the fluctuating deviation to the slow-fast stochastic partial differential equations.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, corresponding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
We study the following equation begin{equation*} frac{partial u(t,,x)}{partial t}= Delta u(t,,x)+b(u(t,,x))+sigma dot{W}(t,,x),quad t>0, end{equation*} where $sigma$ is a positive constant and $dot{W}$ is a space-time white noise. The initial condition $u(0,x)=u_0(x)$ is assumed to be a nonnegative and continuous function. We first study the problem on $[0,,1]$ with homogeneous Dirichlet boundary conditions. Under some suitable conditions, together with a theorem of Bonder and Groisman, our first result shows that the solution blows up in finite time if and only if begin{equation*} int_{cdot}^inftyfrac{1}{b(s)},d s<infty, end{equation*} which is the well-known Osgood condition. We also consider the same equation on the whole line and show that the above condition is sufficient for the nonexistence of global solutions. Various other extensions are provided; we look at equations with fractional Laplacian and spatial colored noise in $mathbb{R}^d$.
One way to define the concentration of measure phenomenon is via Talagrand inequalities, also called transportation-information inequalities. That is, a comparison of the Wasserstein distance from the given measure to any other absolutely continuous measure with finite relative entropy. Such transportation-information inequalities were recently established for some stochastic differential equations. Here, we develop a similar theory for some stochastic partial differential equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا