No Arabic abstract
In this Paper, we have derived Cepheid period-luminosity (P-L) relations for the Large Magellanic Cloud (LMC) fundamental mode Cepheids, based on the data released from OGLE-III. We have applied an extinction map to correct for the extinction of these Cepheids. In addition to the VIW band P-L relations, we also include JHK and four Spitzer IRAC band P-L relations, derived by matching the OGLE-III Cepheids to the 2MASS and SAGE datasets, respectively. We also test the non-linearity of the Cepheid P-L relations based on extinction-corrected data. Our results (again) show that the LMC P-L relations are non-linear in VIJH bands and linear in KW and the four IRAC bands, respectively.
The photometric data for 460 classical, fundamental-mode Cepheids in the SMC with log P > 0.4 measured by Udalski et al. have been analyzed for their P-C and P-L relations, and for the variation of amplitude across the instability strip in a similar way that was done in Papers I and II of this series. The SMC Cepheids are bluer in (B-V) at a given period than for both the Galaxy and the LMC. Their P-C relation in (B-V) is best fit by two lines intersecting at P=10 d. Their break must necessarily exist also in the P-L relations in B and/or V, but remains hidden in the magnitude scatter. An additional pronounced break of the P-L relations in B, V, and I occurs at P=2.5 d. The observed slope of the lines of constant period in the HR diagram agrees with the theoretical expectation from the pulsation equation. The largest amplitude Cepheids for periods less than 13 days occur near the blue edge of the instability strip. The sense is reversed in the period interval from 13 to 20 days, as in the Galaxy and the LMC. The SMC P-L relation is significantly flatter than that for the Galaxy, NGC 3351, 4321, M31, all of which have nearly the same steep slope. The SMC P-L slope is intermediate between that of these steep slope cases and the very shallow slope of Cepheids in the lower metallicity galaxies of NGC 3109 and Sextans A/B, consistent with the premise that the Cepheid P-L relation varies from galaxy-to-galaxy as function of metallicity. Failure to take into account the slope differences in the P-L relation as a function of metallicity using Cepheids as distance indicators results in incorrect Cepheid distances. Part of the 15% difference between our long distance scale - now independently supported by TRGB distances - and that of the HST Key Project short scale is due to the effect of using an inappropriate P-L relation.
In this work, we updated the catalog of Galactic Cepheids with $24mumathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL photometry in our analysis, thus increasing the existing sample to 65. Six different sources of compiled Cepheid distances were used to establish a $24mumathrm{m}$ period-luminosity (P-L) relation. Our recommended $24mumathrm{m}$ P-L relation is $M_{24mumathrm{m}}=-3.18(pm0.10)log P - 2.46(pm0.10)$, with an estimated intrinsic dispersion of 0.20 mag, and is derived from 58 Cepheids exhibiting distances based on a calibrated Wesenheit function. The slopes of the P-L relations were steepest when tied solely to the 10 Cepheids exhibiting trigonometric parallaxes from the Hubble Space Telescope and Hipparcos. Statistical tests suggest that these P-L relations are significantly different from those associated with other methods of distance determination, and simulations indicate that difference may arise from the small sample size.
Photometric data for 593 Cepheids in the LMC, measured by Udalski et al. in the OGLE survey, augmented by 92 longer period Cepheids from other sources, are analyzed for the P-C and P-L relations, and for the variations of amplitude, light curve shape, and period across the instability strip at constant absolute magnitude. Both the P-C and P-L relations have different slopes for periods smaller and larger than 10 days. The break at 10 days is also seen in the period-amplitude relations, and the compound Fourier combinations of R_21 and Phi_21 introduced by Simon and Lee. The LMC Cepheids are bluer than Galactic Cepheids in the B,V,I color bands, part of which is due to differential Fraunhofer line blanketing and part to real differences in the temperature boundaries of the instability strip. The LMC strip is hotter by between 80K and 350K depending on the period. Hence, both the slopes and (necessarily) the zero points of the P-L relations in B,V,I must differ between LMC and the the Galaxy, and in fact they do. The LMC Cepheids are brighter by up to 0.5 mag at log P=0.4 (2 days) and fainter by 0.2 mag at log P=1.5 (32 days). These facts complicate the use of Cepheid as precision distance indicators until the reason is found for the non-universality of the P-L and P-C relations. The very large data base permits mapping of various Cepheid properties at different positions within the instability strip, both at constant period and at constant absolute magnitude over the range of 2 < P < 40 days and -2 > M_V > -5. (...)
Using Spitzer archival data from the SAGE (Surveying the Agents of a Galaxys Evolution) program, we derive the Cepheid period-luminosity (P-L) relation at 3.6, 4.5, 5.8 and 8.0 microns for Large Magellanic Cloud (LMC) Cepheids. These P-L relations can be used, for example, in future extragalactic distance scale studies carried out with the James Webb Space Telescope. We also derive Cepheid period-color (P-C) relations in these bands and find that the slopes of the P-C relations are relatively flat. We test the nonlinearity of these P-L relations with the F statistical test, and find that the 3.6 micron, 4.5 micron and 5.8 micron P-L relations are consistent with linearity. However the 8.0 micron P-L relation presents possible but inconclusive evidence of nonlinearity.
A number of recent works have suggested that the period-luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids exhibits a controversial nonlinear feature with a break period at 10 days. Therefore, the aim of this Research Note is to test the linearity/nonlinearity of the PL relations for the LMC Cepheids in BVIcJHKs band, as well as in the Wesenheit functions. We show that simply comparing the long and short period slopes, together with their associate d standard deviations, leads to a strictly larger error rate than applying rigorous statistical tests such as the F-test. We applied various statistical tests to the current published LMC Cepheid data. These statistical tests include the F-test, the testimator test, and the Schwarz information criterion (SIC) method. The results from these statistical tests strongly suggest that the LMC PL relation is nonlinear in BVIcJH band but linear in the Ks band and in the Wesenheit functions. Using the properties of period-color relations at maximum light and multi-phase relations, we believe that the nonlinear PL relation is not caused by extinction errors.